

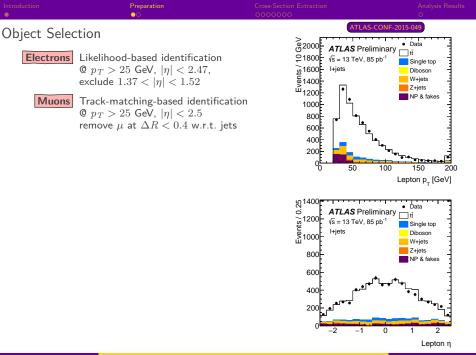
The University of Manchester

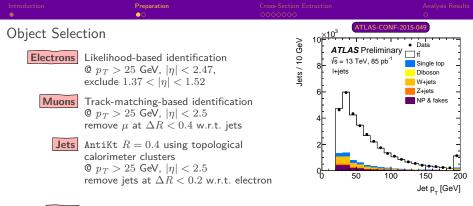
IOP Sussex — 22-03-2016

Measurements of the top quark pair production rate in pp collisions at 13 TeV with the ATLAS detector

Fabian Wilk

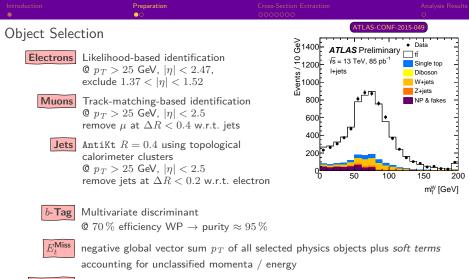
□▶
 4
 4
 4
 5
 4
 5
 4
 5
 4
 5
 4
 5
 4
 5
 4
 5
 4
 5
 4
 5
 4
 5
 4
 5
 4
 5
 4
 5
 4
 5
 4
 5
 4
 5
 4
 5
 4
 5
 4
 5
 4
 5
 4
 5
 4
 5
 4
 5
 4
 5
 4
 5
 4
 5
 4
 5
 4
 5
 4
 5
 4
 5
 4
 5
 4
 5
 4
 5
 4
 5
 4
 5
 4
 5
 4
 5
 4
 5
 4
 4
 4
 4
 4
 4
 4
 4
 4
 4
 4
 4
 4
 4
 4
 4
 4
 4
 4
 4
 4
 4
 4
 4
 4
 4
 4
 4
 4
 4
 4
 4
 4
 4
 4
 4
 4
 4
 4
 4
 4
 4
 4
 4
 4
 4
 4
 4
 4
 4
 4
 4
 4
 4
 4
 4
 4</li


Introduction		
•		
Introduction		

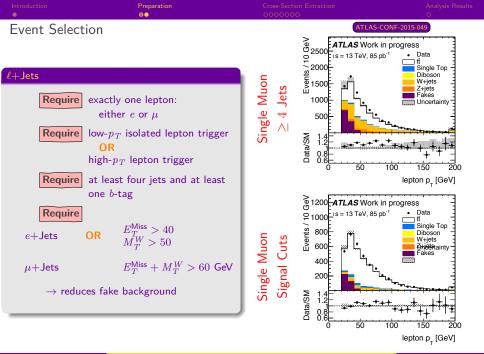

Motivation

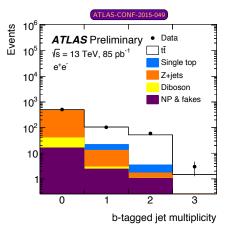
- Inclusive cross-section measurement is first physics effort of Top WG in Run II
- First glance at physics at exciting new energy frontier
- Excellent opportunity for testing:
 - new Run II analysis software framework
 - new prescriptions for systematics, objects, etc. for Run II
 - new Monte Carlo

Data Set and Analysis Information


- Analysis uses $85 \, \mathrm{pb}^{-1}$ of data
 - \rightarrow taken during July 2015 @ 50 ns bunch spacing
- ► Has been presented at Top 2015: ATLAS-CONF-2015-049

b-Tag Multivariate discriminant

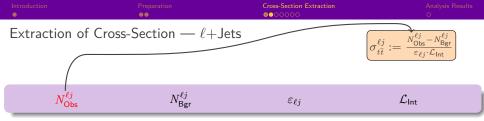

@ 70 % efficiency WP \rightarrow purity ≈ 95 %


Isolation for electrons and muons

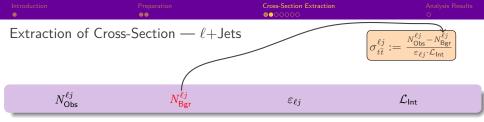
 \rightarrow cut on extra calo cluster and track energy within certain ΔR

additional MC corrections such as lepton efficiencies / scale factors, etc. are applied

	Preparation ●●	
Event Selection		



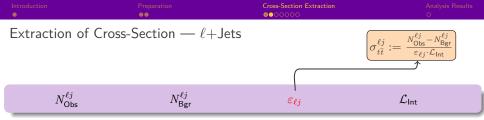
		Cross-Section Extraction	
	••	000000	
Extraction of C	Cross-Section — ℓ +Jets		


Single Formula

$$\sigma_{t\bar{t}}^{\ell j} := \frac{N_{\mathsf{Obs}}^{\ell j} - N_{\mathsf{Bgr}}^{\ell j}}{\varepsilon_{\ell j} \cdot \mathcal{L}_{\mathsf{Int}}}$$

- ▶ $N_{\rm Obs}^{\ell j}$ and $N_{\rm Bgr}^{\ell j}$ are the number of observed respectively expected background events in the ℓ +Jets channel
- \blacktriangleright $\mathcal{L}_{\mathsf{Int}}$ is the integrated luminosity
- $\varepsilon_{\ell j}$ is the (total) selection efficiency in the ℓ +Jets channel

number of signal events is obtained directly from data


number of signal events is obtained directly from data

 number of background events is estimated using a combination of MC-based and data-driven methods

Single Top

Diboson } taken directly from MC

- $Z + \mathbf{Jets}$
 - W+Jets <u>normalisation</u> extracted by exploiting charge asymmetry in W events shapes of distributions taken from MC
 - **Fakes** estimated using matrix method real and <u>fake</u> efficiencies are measured using **loose** leptons in real/fake dominated control regions

- number of signal events is obtained directly from data
- number of background events is estimated using a combination of MC-based and data-driven methods
- ▶ extracted from signal MC, various replicas for systematic variations

- number of signal events is obtained directly from data
- number of background events is estimated using a combination of MC-based and data-driven methods
- extracted from signal MC, various replicas for systematic variations
- luminosity given by GRL as $\mathcal{L}_{Int} = 85 \, \mathrm{pb}^{-1}$
- ▶ affected by a single uncertainty luminosity (up/down) for $9\% (\equiv 7.65 \text{ pb}^{-1})$

	Preparation ●●	Cross-Section Extraction ●●○○○○○	
Extraction of	Cross-Section — $\ell + le$	ts C	li li

Extraction	of	Cross-Section — ℓ +Jets	

$\sigma^{\ell j} \cdot -$	$N_{\text{Obs}}^{\ell j} - N_{\text{Bgr}}^{\ell j}$
$O_{t\bar{t}}$	$\varepsilon_{\ell j} \cdot \mathcal{L}_{Int}$

Event Yields		
Sample	e+Jets	$\mu+Jets$
$t\overline{t}$	$2800~\pm~400$	2620 ± 340
W+Jets	$340~\pm~100$	230 ± 60
Single Top	190 ± 34	180 ± 30
Z+Jets	71 ± 35	45 ± 22
Diboson	10 ± 5	10 ± 5
Fakes	$200~\pm~60$	$140 \ \ + \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $
Total Expected	3600 ± 500	3220 ± 350
Observed	3439	3314

			Cross-Section Extraction	
	••		00000	
 ~ ~	<u> </u>	0.0		

Extraction of Cross-Section — $\ell\ell$

Coupled equations

Exactly one *b*-tag:
$$N_1^{\ell\ell} = \mathcal{L}_{\text{Int}} \sigma_{t\bar{t}} \epsilon_{\text{Presel}}^{\ell\ell} 2\epsilon_b^{\ell\ell} \left(1 - C_b^{\ell\ell} \epsilon_b^{\ell\ell}\right) + N_1^{\text{Bkg},\ell\ell}$$

Exactly two *b*-tags: $N_2^{\ell\ell} = \mathcal{L}_{\text{Int}} \sigma_{t\bar{t}} \epsilon_{\text{Presel}}^{\ell\ell} C_b^{\ell\ell} \epsilon_b^{\ell\ell} \epsilon_b^{\ell\ell} + N_2^{\text{Bkg},\ell\ell}$

- ▶ evaluation is performed separately for $\ell \ell = \{ee, \mu \mu\}$
- $\blacktriangleright \ \epsilon_{\rm Presel}^{\ell\ell}$ is the selection efficiency for the $\ell\ell$ preselection requirements
- $\epsilon_b^{\ell\ell}$ is probability of quark q from decay $t \to W^+ q$ (charge conjugates implied) to
 - fall within detector acceptance, AND
 - be reconstructed as jet passing object selection, AND
 - be tagged as b-Jet
- $C_b^{\ell\ell}$ accounts for correlations in double-b-tagging

in practice probability of double-b-tag is not the naïve $\epsilon_{b}^{\ell\ell} \cdot \epsilon_{b}^{\ell\ell}$

$$\rightarrow C_b^{\ell\ell} := \epsilon_{bb}^{\ell\ell} / \left(\epsilon_b^{\ell\ell} \right)^2$$

 $\blacktriangleright~N_1^{\mathrm{Bkg},\ell\ell}$ and $N_2^{\mathrm{Bkg},\ell\ell}$ are the background contributions

		Cross-Section Extraction	
	••	00000	
Extraction of	Cross-Section — $\ell\ell$		

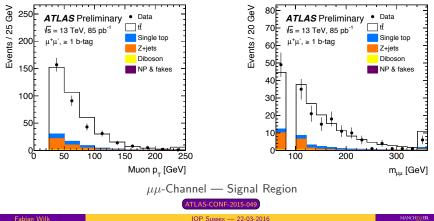
obtained using a mixture of simulation and data-driven methods

 $\left. \begin{array}{c} {\rm Diboson} \\ Z(\to \tau\tau \to \ell\ell\nu^4) + {\rm Jets} \\ {\rm NP \ \& \ Fakes} \end{array} \right\} {\rm taken \ directly \ from \ MC}$

 Wt Single Top normalisation is taken from an approximate NNLO calculation $Z(\to \ell\ell) + {\sf Jets}$ normalisation

- initial normalisation is NNLO prediction
- scaled using correction factor obtained from Z control region (inversion of mass window) in data
- correction is parametrised in number of b-tags

shapes of distributions taken from MC


	Cross-Section Extraction	
••	00000	
Cross-Section — $\ell\ell$		
	••	

- $N_i^{\mathrm{Bkg},\ell\ell}$ $\epsilon_{\mathrm{Presel}}^{\ell\ell}$ $C_b^{\ell\ell}$
- obtained using a mixture of simulation and data-driven methods
- \blacktriangleright both are obtained from $t\bar{t}$ Monte Carlo samples
- \blacktriangleright sensitive to systematics affecting $E_T^{\rm Miss}$ (e.g. JES) due to event selection cuts
- \blacktriangleright uncertainties on these quantities directly translate to uncertainties on $\sigma_{t\bar{t}}$

Target quantities

- Cross-section $\sigma_{t\bar{t}}$ is extracted by solving the coupled equations (using maximum likelihood fit)
- *b*-tagging efficiencies $\epsilon_b^{\ell\ell}$ for $\ell\ell = \{ee, \mu\mu\}$ are extracted alongside

				Cross-Section Extraction	
		••		000000	
—	6.6	C	0.0		

Extraction of Cross-Section — $\ell\ell$

Event Yields

Sample	Electron	Channel	Muon Channel		
	1 Tag	2 Tags	1 Tag	2 Tags	
$t\bar{t}$	84 ± 12	49 ± 18	100 ± 13	58 ± 21	
$Z(\rightarrow \ell \ell) + $ Jets	$9.9~\pm~2.3$	$0.6~\pm~0.7$	18 ± 6	$2.5~\pm~2.0$	
$Z(\to \tau \tau \to \ell \ell \nu^4) + \text{Jets}$	$0.14~\pm~0.11$	< 0.01	$0.11~\pm~0.12$	$0.02~\pm~0.05$	
Diboson	$0.5~\pm~0.4$	$0.02~\pm~0.06$	$0.8~\pm~0.6$	$0.07~\pm~0.08$	
NP & Fakes	2.4 ± 0.5	$1.1~\pm~0.4$	$0.27~\pm~0.23$	$0.08~\pm~0.16$	
Single Top	8.7 ± 1.6	$1.8~\pm~0.9$	10.3 ± 1.6	$2.0~\pm~0.9$	
Total Background	21.6 ± 2.8	3.4 ± 1.8	29.4 ± 3.0	4.6 ± 1.8	
Total Expected	$105~\pm~12$	52 ± 18	129 ± 14	$62~\pm~21$	
Observed	103	59	108	65	

		Cross-Section Extraction	
	••	000000	
Calculation of	Systematic Uncerta	ainties	

Systematics

- systematic variations result in modified parameter values
- varied parameter extracted using
 - alternative Monte Carlo
 - systematic variation of nominal Monte Carlo
- simultaneous variation of all parameters for a given systematic ensures that systematic correlations are taken into account

Procedure

Variations of input to formula are directly propagated onto $\sigma_{t\bar{t}}$ by repeating the extraction procedure, e.g.:

$$\ell + \mathsf{Jets}; \quad \mathsf{JES:} \qquad \sigma_{t\bar{t}}^{\ell j} \left(\mathsf{JES}\right) = \frac{N_{\mathsf{Obs}}^{\ell j} - N_{\mathsf{Bgr}}^{\ell j} \left(\mathsf{JES}\right)}{\varepsilon_{\ell j} \left(\mathsf{JES}\right) \cdot \mathcal{L}_{\mathsf{Int}}}$$

	Cross-Section Extraction	
••	000000	0

Systematic Uncertainties — ℓ +Jets

Summary of Uncertainties

Overall uncertainty $\sim 15\,\%$

- Dominating uncertainties: JES and Luminosity
- Subdominant uncertainties:

b-tagging and hadronisation

Uncertainty	$\Delta \sigma_{t\bar{t}} / \sigma_{t\bar{t}} [\%]$
Data statistics	± 1.5
$t\overline{t}$ NLO modelling	±0.6
$t\overline{t}$ hadronisation	± 4.1
Initial/final state radiation	± 1.9
PDF	± 0.7
Single top cross-section	± 0.3
Diboson cross-sections	± 0.2
Z+jets cross-section	± 1.0
W+jets method stats.	± 1.7
W+jets modelling	± 0.4
Electron energy scale/resolution	± 0.1
Electron identification	± 2.1
Electron isolation	± 0.4
Electron trigger	± 2.8
Muon momentum scale/resolution	± 0.1
Muon identification	± 0.2
Muon isolation	± 0.3
Muon trigger	± 1.2
E_{T}^{Miss} scale/resolution	± 0.4
Jet energy scale	$^{+10.0}_{-7.6}$
Jet energy resolution	± 0.6
b-tagging	± 4.1
Misidentified leptons	$^{+1.3}_{-1.6}$
Analysis systematics	$^{+12.6}_{-10.8}$
Integrated luminosity	$^{+10.8}_{-9.0}$
Total uncertainty	+16.6 -14.1

Systematic Uncertainties — $\ell\ell$

Summary of Uncertainties

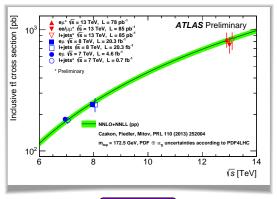
Overall uncertainty $\sim 16\,\%$

Dominating uncertainties:

Data stats, $t\bar{t}$ modelling, and Luminosity

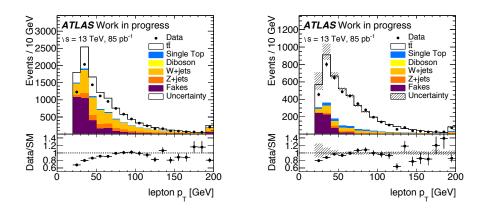
Subdominant uncertainties:

electron ID and PDF uncertainties


Uncertainty	$\Delta\sigma_{i\bar{i}}/\sigma_{i\bar{i}}$ [%]
Data statistics	±7.6
$t\overline{t}$ NLO modelling	±2.6
$t\overline{t}$ hadronisation	± 7.9
Initial/final state radiation	± 1.5
PDF	± 3.7
Single top Wt cross-section	± 0.6
Single top interference	< 0.05
Diboson cross-sections	± 0.4
Z + Jets $\rightarrow \ell \ell$ modelling	± 1.5
$Z + Jets \rightarrow \tau \tau$ modelling	± 0.1
Electron energy scale	± 0.3
Electron energy resolution	± 0.2
Electron identification	± 3.6
Electron isolation	± 1.0
Electron trigger	± 0.2
Muon momentum scale	± 0.1
Muon momentum resolution	± 1.1
Muon identification	± 0.8
Muon isolation	± 1.0
Muon trigger	± 0.6
Jet energy scale	± 1.2
Jet energy resolution	± 0.2
b-tagging efficiency	± 0.8
Missing transverse momentum	± 0.3
NP & Fakes	± 1.5
Analysis systematics	± 11
Integrated luminosity	10
Total uncertainty	16

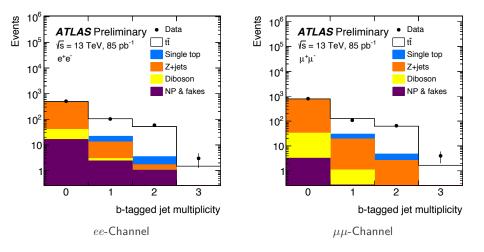
		Analysis Results
	••	 •
Summary		

- \blacktriangleright The very first $t\bar{t}$ cross-section measurement in $\ell+Jets$ and same-flavour dilepton events was presented
- ▶ The extracted cross-section values are consistent with the SM prediction


$$\ell_{t\bar{t}}^{\ell+\text{Jets}} = 817 \pm 13 \text{ (stat.)} \pm 103 \text{ (syst.)} \pm 88 \text{ (lumi.) pb}$$

 $\sigma_{t\bar{t}}^{\ell\ell} = 749 \pm 57 \text{ (stat.)} \pm 91 \text{ (syst.)} \pm 82 \text{ (lumi.) pb}$

- Improvements in luminosity, modelling, and resolutions expected to provide significant increase in precision for future measurement
- Differential cross-section measurement ongoing (with Manchester contributions)

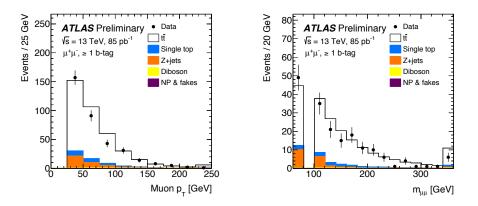


Backup

ℓ +Jets: Kinematics Plots for *ee*-Channel

Dilepton: b-Tag Multiplicity

Dilepton: Z+Jets Normalisation


- 1. Initial normalisation: NNLO prediction
- 2. Control region: $|m_{ll} m_Z| < 10 \text{ GeV}$
- 3. This yields Z+ Jets estimate, which is corrected by f^i , where

$$f^i := \frac{N^i_{\text{Data}} - N^i_{\text{Bkg}}}{N^i_{Z \text{ MC}}} \,,$$

where

- ▶ N_{Data}^i is the number of data events in the control region with *i b*-tagged jets
- Nⁱ_{Bkg} is the number of event from other processes expected in the control region with *i* b-tagged jets (mainly *tī*, *Wt* and diboson events), and Nⁱ_{ZMC} is the number of events predicted by the *Z* Monte Carlo sample in the control region with *i* b-tagged jets

Dilepton: Kinematics Plots for *ee*-Channel

Calculation of Systematic Uncertainties — Details

Systematics

Systematic variations result in modified parameter values

- many are obtained using standard CP group recommendations
 e.g. leptons, jets, b-tagging, ...
- signal modelling evaluated using a suite of comparison Monte-Carlo
- PDF uncertainties evaluated using recent PDF sets

i.e. CT14, MMHT 2014, NNPDF 3.0

- additional, analysis specific background uncertainties, e.g.
 - charge asymmetry modelling and
 - ► Z+Jets modelling
 - alternative fake/real efficiency parameterisation
- simultaneous variation of all parameters for a given systematic ensures that systematic correlations are taken into account

Procedure

Variations of input to formula are directly propagated onto $\sigma_{t\bar{t}}$ by repeating the extraction procedure, e.g.:

$$\ell + \mathsf{Jets}; \quad \mathsf{JES}: \qquad \sigma_{t\bar{t}}^{\ell j} \left(\mathsf{JES} \right) = \frac{N_{\mathsf{Obs}}^{\ell j} - N_{\mathsf{Bgr}}^{\ell j} \left(\mathsf{JES} \right)}{\varepsilon_{\ell j} \left(\mathsf{JES} \right) \cdot \mathcal{L}_{\mathsf{Int}}}$$

Fabian Wilk