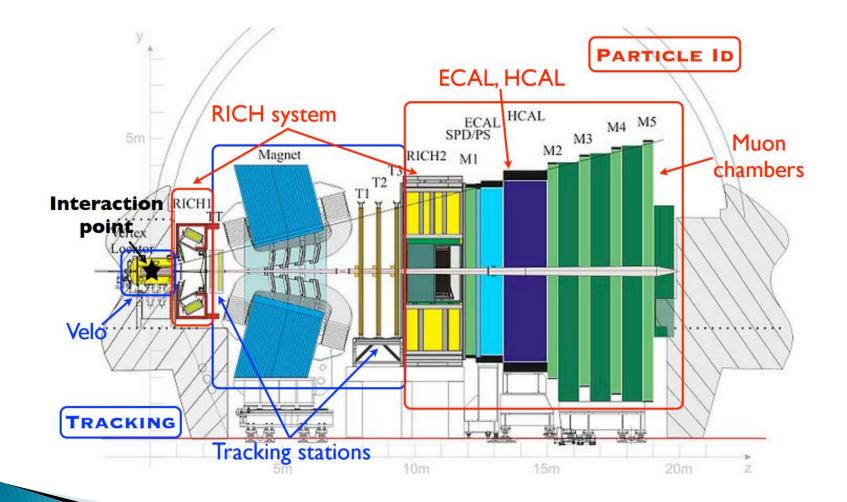


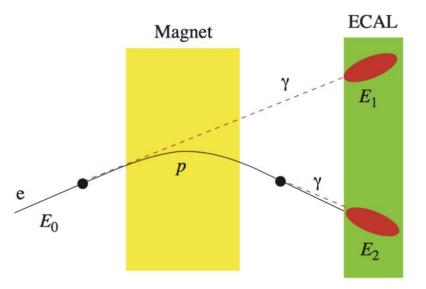
Testing Lepton Universality in Rare Decays of Λ_b Baryons using LHCb Data


Sean Kirwan, on behalf of the LHCb collaboration

IoP Joint Annual HEPP and APP Conference 21st March 2016

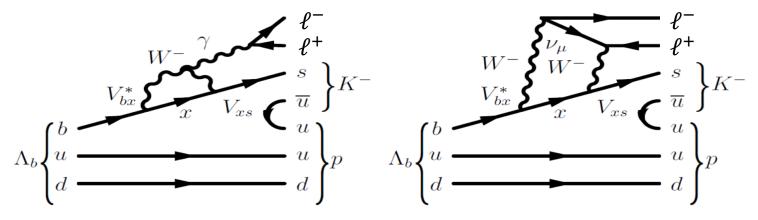
Outline

- Theoretical Motivation
- Pre-selection
- Multivariate selection
- Outcome of the current selection
- Status and plans for the analysis


The LHCb Detector

3

Bremsstrahlung


- Electrons suffer very noticeable Bremsstrahlung losses.
- Photon can be emitted before or after the magnet.
- Energy is recovered by looking at photon hits in the ECAL.
- Corrections are useful but not perfect. We have quite a bit of broadening in the electron mode.

- Emission before the magnet Low • density inside magnet region allows photon's path to the ECAL to be described by a simple extrapolation of the electron's original path.
- Emission after the magnet the ٠ Bremsstrahlung photon deposits its energy in the same ECAL cell as the electron and the energy is recovered easily.

Rare Decays

• The rare decay $\Lambda_b^0 \rightarrow pK^-\ell^+\ell^-$ proceeds via the FCNC $b \rightarrow s\ell\ell$, which only occurs in the SM via electroweak penguin and W^{\pm} box diagrams.

These processes are suppressed in the SM, but new physics can enter into the loops and increase the amplitudes.

Operator Product Expansion

The effective Hamiltonian for this decay can be expressed as an operator product expansion.

$$H_{eff} = -\frac{4G_{F}}{\sqrt{2}} V_{tb} V_{ts}^{*} \sum_{i} \left[C_{i}(\mu) O_{i}(\mu) + C_{i}'(\mu) O_{i}'(\mu) \right]_{\substack{right-handed part\\suppressed in SM}}$$

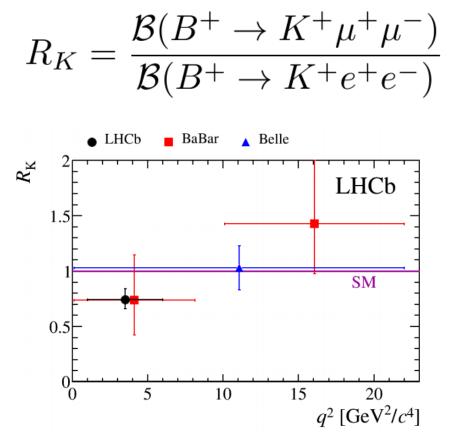
- For $b \rightarrow s\ell\ell$ transitions it is dominated by the operators O_7 , O_9 and O_{10} , along with their respective Wilson coefficients C_7 , C_9 and C_{10} .
- New physics may add contributions to the C_i or introduce new operators O_i that do not respect lepton universality.

Measuring Lepton Universality

The parameter

$$R_{pK} = \frac{\mathcal{B}(\Lambda_b^0 \to pK^- \mu^+ \mu^-)}{\mathcal{B}(\Lambda_b^0 \to pK^- e^+ e^-)}$$

is expected to be unity in the SM ($\pm O(10^{-3})$), as electroweak interactions are required to couple equally to all lepton flavours. JHEP 12 (2007) 040,


If this ratio deviates from unity, it could be a sign of new physics that does not respect lepton universality.

for similar ratio R_{κ}

Why this Λ_b^0 Decay?

- ▶ The decay $B^+ \rightarrow K^+ \ell^+ \ell^-$ proceeds via the same FCNC. Its corresponding ratio R_K was measured by LHCb in 2014 and was found to be $0.745^{+0.090}_{-0.074}$ (stat) ± 0.036 (syst).
- This result is 2.6 standard deviations away from the SM prediction.
- A lepton universality measurement involving this FCNC in a new channel is therefore of great interest in the search for new physics.
- LHCb also has measurements of R_{K*} (underway) and R_{D*} (published).

LHCb: PRL 113 (2014) 151601 Babar: PRD 86 (2012) 032012 Belle: PRL 103 (2009) 171801

Data

- This analysis uses the full $3fb^{-1}$ collected by LHCb in 2011-2012 ($1fb^{-1}$ at $\sqrt{s} = 7$ TeV from 2011 and $2fb^{-1}$ at $\sqrt{s} = 8$ TeV from 2012).
- Looking at favoured dilepton invariant mass squared (q²) region $1 < q^2 < 6 \text{ GeV}/c^2$, with possibility to extend further.
- As part of the analysis, smaller samples of $0.9 fb^{-1}$ for the muon mode and $0.7 fb^{-1}$ for the electron mode are being used for verification with the J/ ψ control channel (more on this shortly).
- Before the analysis, the data are subjected to a loose 'stripping' selection to reduce the sample size.

Analysis Strategy

The analysis seeks to measure R_{pK} using the double ratio

$$R_{pK} = \frac{\left(\frac{\mathcal{B}(\Lambda_b^0 \to pK^- \mu^+ \mu^-)}{\mathcal{B}(\Lambda_b^0 \to pK^- J/\psi(\to \mu^+ \mu^-))}\right)}{\left(\frac{\mathcal{B}(\Lambda_b^0 \to pK^- e^+ e^-)}{\mathcal{B}(\Lambda_b^0 \to pK^- J/\psi(\to e^+ e^-))}\right)}$$

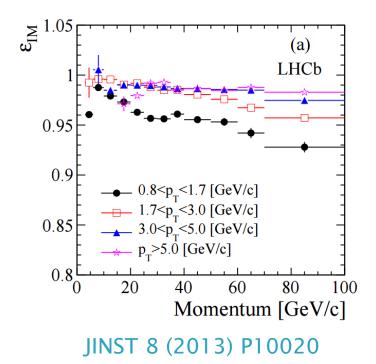
- This serves to cancel out a lot of the systematic errors arising in the measurement of these branching fractions.
- The decay $\Lambda_b^0 \to pK^-J/\psi(\to \ell^+\ell^-)$ is also a useful control channel to verify our selection.

The J/ ψ Control Channel

• $\Lambda_b^0 \to pK^-J/\psi(\to \ell^+\ell^-)$ has the same final state as the rare mode and has been studied previously.

- PDG gives equal branching fractions for J/ψ decaying to electrons and muons.
- We therefore expect

$$\frac{\mathcal{B}(\Lambda_b^0 \to pK^- J/\psi(\to \mu^+ \mu^-))}{\mathcal{B}(\Lambda_b^0 \to pK^- J/\psi(\to e^+ e^-))} = 1$$

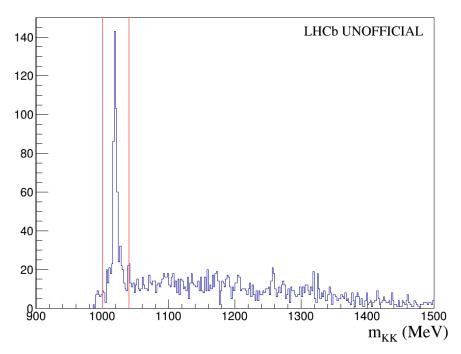

This will be verified as part of the selection procedure.

Pre-selection

- Refers to selection made before the data is passed to the multivariate classifier (more on this shortly).
- Selection criteria imposed on particle identification (PID) and other variables.
- Vetoes also imposed to remove backgrounds that peak in the pK*ll* mass spectrum.

PID and Other Variables

- Information from the particle ID system at LHCb is used to produce variables that describe how likely it is that a given candidate is a proton, kaon, pion, electron or muon.
- Muon identification efficiency at LHCb is ~97%.
- Selection also performed on transverse momenta of final state particles.



Peaking Backgrounds

- After PID selection we may still have particles from other decays mis-identified as products of our Λ_b^0 decay.
- This causes non-signal peaks in the m_{pKµµ} spectrum. There are two major contributors; removal described on the next slide.
- $\overline{B}{}^0 \rightarrow J/\psi \,\overline{K}^*(\to K^+\pi^-)$ where the either the pion has been misidentified as a proton or both the kaon and pion have been misidentified as a proton and kaon respectively.
- $\overline{B}_{s}^{0} \rightarrow J/\psi \phi(\rightarrow K^{+}K^{-})$ where one of the kaons has been misidentified as a proton.

Peaking Background Removal

- The masses of various daughter particles are assigned to the particles in our final state.
- If a combination produces a peak at the mass of a known particle, this indicates a background decay present in the dataset.
- For example, the figure shows the two-particle mass distribution after the proton candidate has been assigned a kaon mass.

 Clear peak at the Φ mass is removed by rejecting events in the region shown.

Multivariate Selection

- Combinatorial background produced when final state tracks from different Λ_b^0 s are reconstructed together.
- Removed using a Boosted Decision Tree algorithm (BDT).
- BDT is trained using a Monte Carlo simulated sample to represent the signal and a sample of real data in the upper mass sideband to represent the background.
- A selection of variables is used for training that provides good signal/background separation.

Multivariate Selection Variables

- $\triangleright \log \left(K^- \chi_{\rm IP}^2 \right)$
- $\blacktriangleright \log(p \chi_{\rm IP}^2)$
- $\blacktriangleright \log \left(\Lambda_b^0 \, \chi_{\rm IP}^2 \right)$
- p_{PT} + K_{PT}
- Λ_b^0 flight distance
- $\Lambda_b^0 \chi_{\text{vertex}}^2$

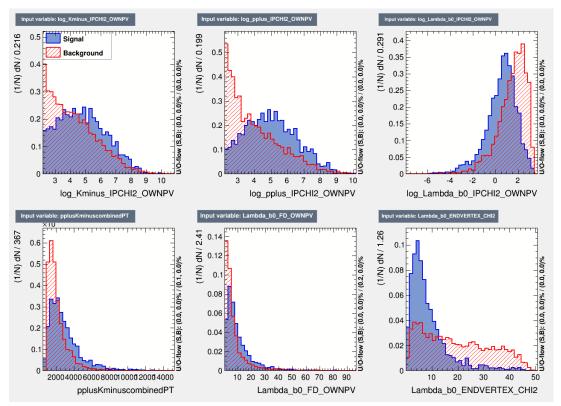
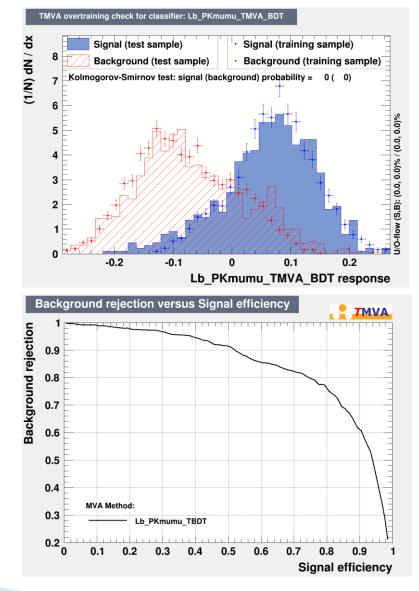
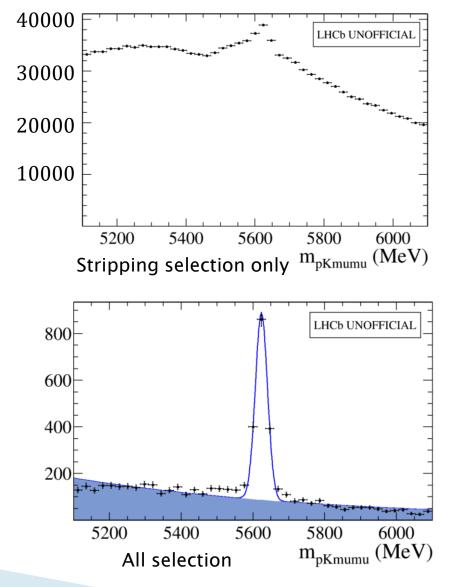



 Figure shows Monte Carlo signal (blue) and upper sideband background (red) distributions of the input variables in the muon mode.


Multivariate Selection

- BDT response shown here for a small sample in muon mode.
- Events tentatively selected for which the response is greater than 0.02.

Outcome of Current Selection

- Probability Density Function (PDF) made for the muon mode after all selection has been applied.
- Signal fitted with Crystal Ball function, remaining background approximated by an exponential.
- Work still in progress to refine the model.
- Shown here is a comparison of the data after stripping selection only (top) and after stripping, pre- and multivariate selection (bottom).

A Note on Systematics

- The contributions of the various sources of systematic errors have yet to be worked out, but it is possible to identify some of the sources.
- In the electron mode, an uncertainty is present in the signal model. This is negligible in the muon mode due to excellent dimuon mass resolution at LHCb.
- Some residual uncertainties will not cancel in the double ratio due to different final state kinematics between the control channel and rare modes.
- Selection efficiencies will be calculated using simulated data, which will not perfectly resemble real data.

Conclusion: Status and Plans

- The measurement of R_{pK} is being developed. If the result differs from unity, this could indicate new physics beyond the SM.
- > The analysis is a work in progress.

- J/ψ channel is used as a control channel for developing the selections.
- Any remaining physics backgrounds will be modelled with simulated data.
- We expect this to be completed in the coming months.

Backup Slides

Stripping Selection

Particle	Requirement
<i>b</i> hadron	Flight $\chi^2 < 100$ DIRA > 0.9995 Impact Parameter $\chi^2 < 25$ Vertex $\chi^2 < 9$
Dilepton	$\begin{array}{l} PT > 0 \\ Flight \ Distance \ \chi^2 > 16 \\ Impact \ Parameter \ \chi^2 > 0 \end{array}$
ℓ^{\pm}	Impact Parameter $\chi^2 < 9$ PT > 300
К, р	Impact Parameter $\chi^2 < 9$ PT > 400
$\ell = \mu$	IsMuon = TRUE
$\ell = e$	PIDe = 0

Definitions of PID variables

- Information from the particle ID systems shown on slide 3 is used to create likelihoods that a candidate is a π^{\pm} , p, K, e^{\pm} or μ^{\pm} .
- The Difference of the Log Likelihoods (DLL) is a logarithm of the ratio between a likelihood to be one particle and the likelihood to be a pion – pion likelihood used as a reference.
- For example $DLL_{e\pi} = \ln L(e) \ln L(\pi)$ is a measure of how electron-like a particle is compared to a pion.
- This variable is combined with information about the track of the candidate in a neural network to produce another variable called ProbNN.
- For example pplus_ProbNNk is the probability that a proton candidate is a kaon.

Specifics of Pre-selection

Particle	$\ell = \mu$	$\ell = e$
p	ProbNNp > 0.1 ProbNNpi < 0.7 ProbNNk < 0.8	log(ProbNNp) > -1.0 log(ProbNNpi) < -0.4 log(ProbNNk) < -0.2
K ⁻	ProbNNk > 0.2 ProbNNpi < 0.6	ProbNNk > 0.2 log(ProbNNpi) < -0.4
ℓ^{\pm}		ProbNNe > 0.4 log(ProbNNpi) < -0.3

- Table shows requirements imposed on PID variables.
- In both the electron and muon mode, the combined transverse momentum of proton and kaon is required to be >1000 MeV/c.
- In the electron mode only, the transverse momenta of both leptons are required to be between 350 MeV/c and 25000 MeV/c, where the upper limit serves to remove events that are clearly non-signal.

Specifics of Veto Selection

Decay	$\ell=\mu$	$\ell = e$
$\overline{B}{}^0 \to J/\psi \overline{K}{}^* (\to K^+ \pi^-)$	5250 < m _{πKµµ} < 5310 MeV/c ² 5250 < m _{Kπµµ} < 5310 MeV/c ²	
$B_s^0 \to J/\psi \phi(\to K^+K^-)$	5340 < m _{ККµµ} < 5400 MeV/c²	
$\bar{K}^* \to K^+ \pi^-$	880 < m _{Kπ} < 910 MeV/c² 880 < m _{πK} < 910 MeV/c²	860 < m _{Kπ} < 930 MeV/c² 860 < m _{πK} < 930 MeV/c²
$\phi \to K^+ K^-$	1000 < m _{KK} < 1040 MeV/c ²	1000 < m _{KK} < 1030 MeV/c ²

- Table shows mass regions that are vetoed to remove peaking background decays.
- No veto is made on B decays in the electron channel because broadening due Bremsstrahlung corrections means that any meaningful veto results in heavy signal losses.