Measurement of the B⁰ width difference with the ATLAS detector

Malcolm Skinner

Joint annual IoP HEP and APP conference 2016

23/03/2016

Measurement of BO width difference - IoP Annual HEPP Meeting

Overview

- Motivation
- Measurement method.
- Measurement of B^0 proper decay length.
- Ratio of proper decay lengths.
- Fit to obtain $\Delta \Gamma_d / \Gamma_d$.
- Systematic uncertainties.
- Conclusion.

Motivation

• The relative value of $\Delta \Gamma_d / \Gamma_d$ is reliably predicted in the Standard Model (arXiv: <u>1102.4274 [hep-ph]</u>):

 $\Delta \Gamma_d / \Gamma_d = (0.42 \pm 0.08) \times 10^{-2}$

- It has been shown (arXiv: <u>1404.2531 [hep-ph]</u>) that a relatively large variation of $\Delta\Gamma_d$ due to a possible new physics contribution would not contradict other existing SM results.
- A precise measurement of $\Delta \Gamma_d$ would therefore provide a stringent test of the underlying theory, complementary to other searches.
- The current experimental uncertainty on $\Delta\Gamma_d$ is much larger than the SM central value, preventing a meaningful test of the SM prediction.
- Furthermore, the measurements of $\Delta\Gamma_d$ made by Belle (arXiv: <u>1203.0930</u> [hep-ex]) and LHCb (arXiv: <u>1402.2554 [hep-ex]</u>) differ by more than 1.5 σ , which introduces a controversy in the experimental result.
- Therefore, more precise measurements of $\Delta\Gamma_d$ are needed to establish its value and perform an important test of the SM.

Measurement method

- The decay rate of the light and heavy mass eigenstates $(B_d^L \text{ and } B_d^H)$ to a given final *f* state can be different. Therefore the time dependence of the decay rate of $B^0 \rightarrow f$ is sensitive to *f*.
- The untagged time-dependant decay rate of a B^0 meson into final state f is given by:

$$\Gamma(f,t) \propto e^{-\Gamma_d t} \left[\cosh \frac{\Delta \Gamma_d t}{2} + A_p A_{CP}^{dir} \cos(\Delta m_d t) + A_{\Delta \Gamma} \sinh \frac{\Delta \Gamma_d t}{2} + A_p A_{CP}^{mix} \sin(\Delta m_d t) \right]$$

- The final states we consider are $J/\psi K_S$ and $J/\psi K^{*0}$. The J/ψ is reconstructed using the decay $J/\psi \rightarrow \mu^+\mu^-$. The K_S and K^{*0} are reconstructed using the $K_S \rightarrow \pi^+\pi^-$ and $K^{*0} \rightarrow K^+\pi^-$ decay modes.
- For the J/ ψ K^{*0} channel, $A_{CP}^{dir} = \pm 1$, $A_{\Delta\Gamma} = 0$, $A_{CP}^{mix} = 0$.
- For the J/ ψ K_S channel, $A_{CP}^{dir} = 0$, $A_{\Delta\Gamma} = \cos 2\beta$, $A_{CP}^{mix} = -\sin 2\beta$, where β is the Unitarity Triangle angle measured as $\sin 2\beta = 0.679 \pm 0.020$.

•
$$A_p$$
 is the production asymmetry of B^0 and $\overline{B^0}$: $A_p = \frac{\sigma(B^0) - \sigma(\overline{B^0})}{\sigma(B^0) + \sigma(\overline{B^0})}$

Measurement method

• The value of $\Delta \Gamma_d$ can be determined by measuring the experimental ratio of proper decay lengths L_{prop}^B of the two channels:

$$R(L_{prop}^{B}) = \frac{N(B^{0} \to J/\psi K_{S}, L_{prop}^{B})}{N(B^{0} \to J/\psi K^{*0}, L_{prop}^{B})}$$

where $N(B^0 \rightarrow J/\psi K_S, L_{prop}^B)$ and $N(B^0 \rightarrow J/\psi K^{*0}, L_{prop}^B)$ are the number of reconstructed B⁰ decays to the specified final state as a function of L_{prop}^B .

• The predicted decay rate as a function of L^B_{prop} for the decay $B^0 \rightarrow f$ is:

$$\Gamma(f, L^B_{prop}) = \int_0^\infty G(L^B_{prop} - ct, f) \Gamma(f, t) dt$$

- $G(L_{prop}^B ct, f)$ is the function describing the resolution of L_{prop}^B for a given channel *f*.
- $R(L_{prop}^B)$ is dependent on $\Delta\Gamma_d$ which can therefore be measured by fitting $R(L_{prop}^B)$ using the predicted decay rates of the J/ ψ K_s and J/ ψ K^{*0} channels.

Measurement of B⁰ proper decay length

- The technique used to measure the proper decay length (L_{prop}^B) is designed to use the same input information for both the $B^0 \rightarrow J/\psi K_S$ and $B^0 \rightarrow J/\psi K^{*0}$ channels. This reduces the experimental bias in $R(L_{prop}^B)$.
- The origin of the B^0 (x^{PV} , y^{PV}) is measured using a PV fit in which the decay products of the B^0 are removed. The primary vertex which has the smallest $|\delta z|$ relative to the B^0 trajectory is selected as the PV of B^0 production.
- The position of the B^0 decay is defined by the J/ ψ decay vertex ($x^{J/\psi}$, $y^{J/\psi}$), which is constructed from the vertex fit of the two muons.
- For each reconstructed $B^0 \rightarrow J/\psi K_S$ and $B^0 \rightarrow J/\psi K^{*0}$ candidate, we construct the proper decay length L^B_{prop} , defined as:

$$L_{prop}^{B} = \frac{(x^{J/\psi} - x^{PV})p_{T,x}^{B} + (y^{J/\psi} - y^{PV})p_{T,y}^{B}}{(p_{T}^{B})^{2}}m_{B^{0}}$$

Measurement of B⁰ proper decay length

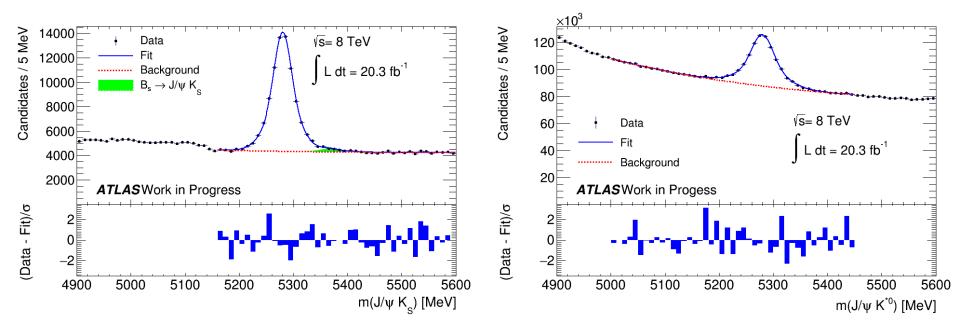
• The proper decay length distribution is obtained by first dividing the range of L_{prop}^{B} between -0.3 and 6.0 mm into ten bins defined below:

Bin number	1	2	3	4	5	6	7	8	9	10
Lower edge [mm]	-0.3	0.0	0.3	0.6	0.9	1.2	1.5	1.8	2.1	3.0
Upper edge [mm]	0.0	0.3	0.6	0.9	1.2	1.5	1.8	2.1	3.0	6.0

- In each bin, distributions of the invariant mass of $J/\psi K_S$ and $J/\psi K^{*0}$ are produced and the number of signal $B^0 \rightarrow J/\psi K_S$ and $B^0 \rightarrow J/\psi K^{*0}$ in each bin is determined by a fit to these distributions.
- For the $B^0 \rightarrow J/\psi K^{*0}$, the signal is modelled as the sum of two Gaussian functions. The background is modelled using an exponential of the form $e^{-a bx cx^2}$.
- For the $B^0 \rightarrow J/\psi K_S$, the signal is modelled as the sum of two Gaussian functions. The background is modelled in two parts. First, the contribution from $B_s \rightarrow J/\psi K_S$ decays is modelled by two Gaussian functions. Second, the combinatorial background is modelled by an exponential of the form $e^{-a bx cx^2}$.

Measurement of B⁰ proper decay length

• E.g. in the bin $0.0 < L_{prop}^B < 0.3$ mm:



- In each bin of L^B_{prop} , the number of signal events and its statistical uncertainty are extracted from the fit.
- The ratio of the number of B^0 candidates in the two channels in each L^B_{prop} bin gives the experimental ratio $R_{i,uncor}(L^B_{prop})$:

$$R_{i,uncor}(L^B_{prop}) = \frac{N_i(J/\psi K_S)}{N_i(J/\psi K^{*0})}$$

Ratio of reconstruction efficiencies

- The experimental ratio $R_{uncor}(L^B_{prop})$ must be corrected to account for the difference in the reconstruction efficiencies of the $B^0 \rightarrow J/\psi K_S$ and $B^0 \rightarrow J/\psi K^{*0}$ channels.
- The difference in reconstruction efficiencies exists because the hadronic tracks in the $B^0 \rightarrow J/\psi K_S$ decay come from a displaced $K_s \rightarrow \pi\pi$ vertex, while all 4 tracks from the $B^0 \rightarrow J/\psi K^{*0}$ decay come from a single vertex.
- This difference is the largest source of experimental bias in $R_{uncor}(L_{prop}^B)$ and it can be assessed only with MC.
- We therefore measure the ratio of reconstruction efficiencies in MC defined as:

$$R_{i,eff}(L^B_{prop}) = \frac{\varepsilon_i(B^0 \to J/\psi K_s, L^B_{prop})}{\varepsilon_i(B^0 \to J/\psi K^{0*}, L^B_{prop})}$$

• $R_{i,uncor}(L^B_{prop})$ is then divided by $R_{i,eff}(L^B_{prop})$ to obtain the corrected ratio $R_{i,cor}(L^B_{prop})$.

Fit to obtain $\Delta \Gamma_d / \Gamma_d$

• For each bin *i* of L_{prop}^{B} , the expected number of events in each channel is given by:

$$N_{i}(B^{0} \to J/\psi K_{S}, \Delta\Gamma_{d}/\Gamma_{d}) = C_{1} \int_{L_{i}^{min}}^{L_{i}^{max}} \Gamma(J/\psi K_{S}, L_{prop}^{B}) dL_{prop}^{B}$$

$$N_i(B^0 \to J/\psi \, K^{*0}, \Delta \Gamma_d / \Gamma_d) = C_2 \int_{L_i^{min}}^{L_i^{max}} \Gamma \left(J/\psi \, K^{*0}, L_{prop}^B \right) \, dL_{prop}^B$$

where L_i^{min} and L_i^{max} are the lower and upper bin edges of the given bin *i*.

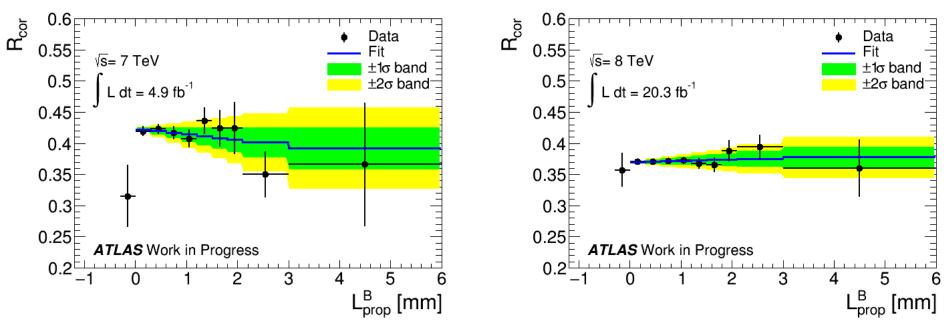
- The sensitivity to $\Delta \Gamma_d$ comes from $\Gamma(J/\psi K_S, L_{prop}^B)$ while $\Gamma(J/\psi K^{*0}, L_{prop}^B)$ provides the normalization.
- The expected ratio of decay rates in bin *i* is then:

$$R_{i,exp}(\Delta\Gamma_d/\Gamma_d) = \frac{N_i(B^0 \to J/\psi K_S, \Delta\Gamma_d/\Gamma_d)}{N_i(B^0 \to J/\psi K^{*0}, \Delta\Gamma_d/\Gamma_d)}$$

• The corrected ratio $R_{i,cor}(L^B_{prop})$ is fitted using $R_{i,exp}(\Delta\Gamma_d/\Gamma_d)$ and the value of $\Delta\Gamma_d/\Gamma_d$ is obtained from the χ^2 minimization of:

$$\chi^{2}(\Delta\Gamma_{d}/\Gamma_{d}) = \sum_{i=2}^{10} \frac{\left(R_{i,cor} - R_{i,exp}(\Delta\Gamma_{d}/\Gamma_{d})\right)^{2}}{\sigma_{i}^{2}}$$

Fit to obtain $\Delta \Gamma_d / \Gamma_d$



- The fit has $\chi^2/ndf = 4.34/7$ in 2011 and $\chi^2/ndf = 2.81/7$, which demonstrates that the fit describes the data very well.
- Two separate results for the 2011 and 2012 datasets:

 $\Delta \Gamma_d / \Gamma_d = (-2.8 \pm 2.2(stat.) \pm 1.5(MC \ stat.)) \times 10^{-2} \ [2011] \qquad \text{ATLAS Work in Progress}$ $\Delta \Gamma_d / \Gamma_d = (+0.8 \pm 1.3(stat.) \pm 0.5(MC \ stat.)) \times 10^{-2} \ [2012] \qquad \text{ATLAS Work in Progress}$

Systematic uncertainties

- The procedure used to extract the L_{prop}^{B} distribution is designed explicitly to be similar for both the $B^{0} \rightarrow J/\psi K_{S}$ and $B^{0} \rightarrow J/\psi K^{*0}$ channels. Therefore, many systematics such as trigger selection, decay-time resolution or B^{0} production properties cancel when the ratio $R(L_{prop}^{B})$ is made.
- However, some differences between the two channels cannot be eliminated and their systematic impact must be estimated.
- The following table shows the considered sources of systematic uncertainty and their values.

Source	$\delta(\Delta\Gamma_d/\Gamma_d), 2011$	$\delta(\Delta\Gamma_d/\Gamma_d), 2012$
K_S decay length	0.21×10^{-2}	0.16×10^{-2}
K_S pseudorapidity	0.14×10^{-2}	0.01×10^{-2}
$B^0 \rightarrow J/\psi K_S$ mass range	0.47×10^{-2}	0.59×10^{-2}
$B^0 \rightarrow J/\psi K^{*0}$ mass range	0.30×10^{-2}	0.15×10^{-2}
Background description	0.16×10^{-2}	0.09×10^{-2}
$B_s^0 \rightarrow J/\psi K_S$ contribution	0.11×10^{-2}	0.08×10^{-2}
L^B_{prop} resolution	0.29×10^{-2}	0.29×10^{-2}
Fit bias (Toy MC)	0.07×10^{-2}	0.07×10^{-2}
B^0 production asymmetry	0.01×10^{-2}	0.01×10^{-2}
MC statistics	1.54×10^{-2}	0.45×10^{-2}
Total uncertainty	1.69×10^{-2}	0.84×10^{-2}

ATLAS Work in Progress

Results and conclusion

• The measurements of $\Delta \Gamma_d / \Gamma_d$ with statistical and systematic uncertainties are:

$$\Delta\Gamma_d/\Gamma_d = (-2.8 \pm 2.2(stat.) \pm 1.7(syst.)) \times 10^{-2} \quad [2011] \qquad \text{ATLAS Work in Progress}$$

$$\Delta \Gamma_d / \Gamma_d = (+0.8 \pm 1.3(stat.) \pm 0.8(syst.)) \times 10^{-2}$$
 [2012] **ATLAS** Work in Progress

- The results from the two years are consistent. We therefore combine the two measurements, taking into account any correlation of sources of systematics between the two years.
- The combined result for the statistics collected by the ATLAS detector in Run I is then:

$$\Delta \Gamma_d / \Gamma_d = (-0.1 \pm 1.4) \times 10^{-2}$$

• It is in agreement with the standard model standard model prediction of:

$$\Delta \Gamma_d / \Gamma_d = (0.42 \pm 0.08) \times 10^{-2}$$

- It is also consistent with other measurements at other experiments performed by BaBar, Belle and LHCb.
- An important by-product of this analysis is the measurement of the B^0 production asymmetry in the region $|\eta(B^0)| < 2.5$:

$$A_p = (+0.25 \pm 0.48 \pm 0.05) \times 10^{-2}$$
 ATLAS Work in Progress

• This is the first measurement of the quantity in ATLAS and it is consistent with the LHCb measurement in the region $2.5 < |\eta(B^0)| < 4.0$.

Backup Slides

Production asymmetry

• The B^0 production asymmetry A_P can be measured from the charge asymmetry of the $B^0 \rightarrow J/\psi K^{*0}$ decay which is measured in each bin of L^B_{prop} :

$$A_{i,obs} = \frac{N(J/\psi K^{*0}, i) - N(J/\psi \overline{K^{*0}}, i)}{N(J/\psi K^{*0}, i) + N(J/\psi \overline{K^{*0}}, i)}$$

- $N(J/\psi \overline{K^{*0}}, i)$ is the observed number of $J/\psi \overline{K^{*0}}$ decays. It includes genuine $\overline{B^0} \to J/\psi \overline{K^{*0}}$ and $B^0 \to J/\psi K^{*0}$ decays. The contribution of $B^0 \to J/\psi K^{*0}$ decays is due to a mis-assignment of the kaon and pion masses to the charged tracks.
- Likewise, $N(J/\psi K^{*0}, i)$ consists of both $B^0 \to J/\psi K^{*0}$ and $\overline{B^0} \to J/\psi \overline{K^{*0}}$ decays.
- The mistag fraction W quantifies the fraction of true $B^0 \rightarrow J/\psi K^{*0}$ in $N(J/\psi \overline{K^{*0}}, i)$. W does not depend on B^0 lifetime. Using MC, we obtain a value of $W = 0.12 \pm 0.02$.
- The mistag fraction is found to be the same for $\overline{B^0} \to J/\psi \overline{K^{*0}}$ and $B^0 \to J/\psi \overline{K^{*0}}$ decays.

Production asymmetry

• The expected asymmetry in bin *i* of L_{prop}^{B} is given by:

 $A_{i,exp} = (A_{det} + A_{i,osc})(1 - 2W)$

- A_{det} is the detector asymmetry, which is mainly due to the difference in the interaction cross-sections of K^+ and K^- , and does not depend on the B^0 lifetime.
- $A_{i,osc}$ is the asymmetry due to B^0 oscillations and the factor (1 2W) accounts for incorrectly identified B^0 decays.
- The time dependent decay rates of the decays $B^0 \to J/\psi K^{*0}$ and $\overline{B^0} \to J/\psi \overline{K^{*0}}$ are given by, respectively:

$$\Gamma(J/\psi K^{*0}, t) \propto e^{-\Gamma_d t} \left[\cosh \frac{\Delta \Gamma_d t}{2} - A_p \sin(\Delta m_d t) \right]$$

$$\Gamma(J/\psi \overline{K^{*0}}, t) \propto e^{-\Gamma_d t} \left[\cosh \frac{\Delta \Gamma_d t}{2} + A_p \sin(\Delta m_d t) \right]$$

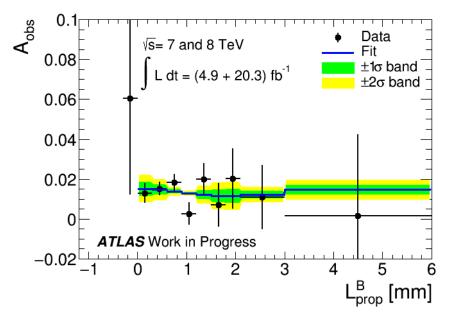
- $A_{i,osc}$ is obtained by convoluting the decay rates with the detector resolution $G(L_{prop}^B ct, J/\psi K^{*0})$ and then integrating over the range of bin *i*.
- The measured charge asymmetry $A_{i,obs}$ is fitted using $A_{i,exp}$ and the production asymmetry A_P is obtained from the χ^2 minimization of:

$$\chi^{2}(A_{det}, A_{P}) = \sum_{i=2}^{10} \frac{(A_{i,obs} - A_{i,exp})^{2}}{\sigma_{i}^{2}}$$

23/03/2016

Measurement of BO width difference - IoP Annual HEPP Meeting

Production asymmetry



• From the fit we obtain:

$$A_{det} = (+1.33 \pm 0.24 \pm 0.22) \times 10^{-2}$$
 ATLAS Work in Progress

$$A_p = (+0.25 \pm 0.48 \pm 0.05) \times 10^{-2}$$
 ATLAS Work in Progress

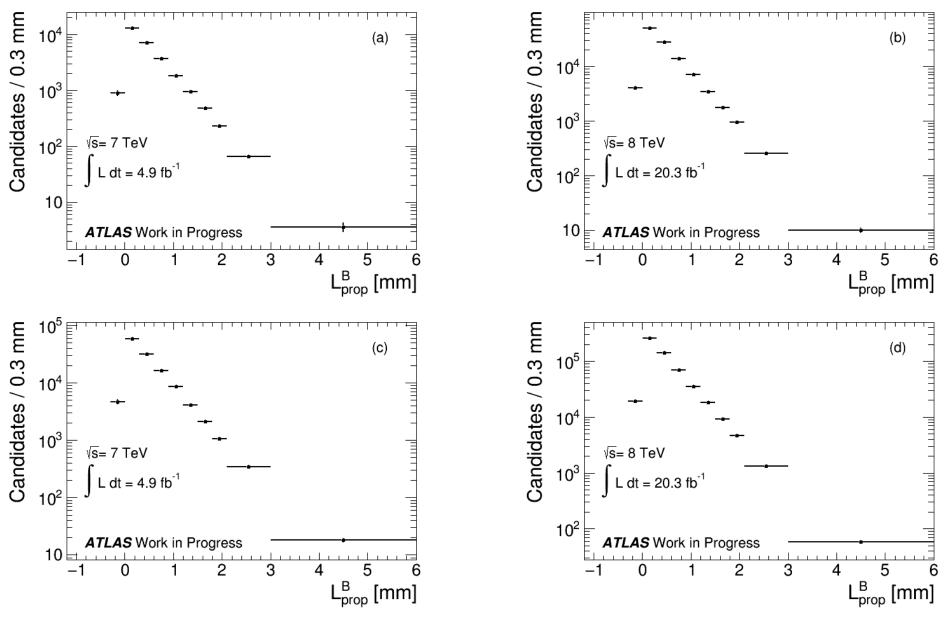
- The uncertainties are due to statistical limitations and the uncertainty in the mistag fraction.
- This is the first measurement of the B^0 production asymmetry by ATLAS in the central η region ($|\eta(B^0)| < 2.5$). The result is consistent with and more precise than the current LHCb measurement for the region 2.5 < $|\eta(B^0)| < 4.0$:

 $A_p = (-0.36 \pm 0.76 \pm 0.28) \times 10^{-2}$

23/03/2016

Measurement of B0 width difference - IoP Annual HEPP Meeting

L_{prop}^{B} distributions



Ratio of efficiencies

