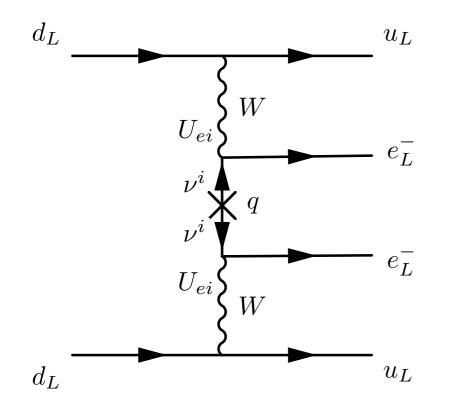
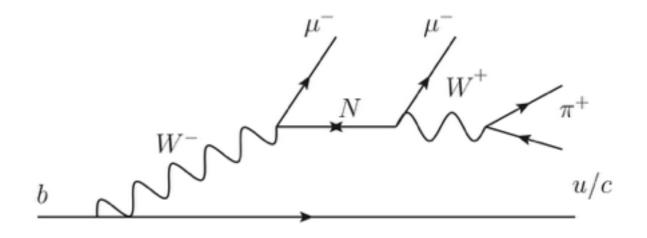
Imperial College London

Inclusive search for Majorana Neutrinos at LHCb

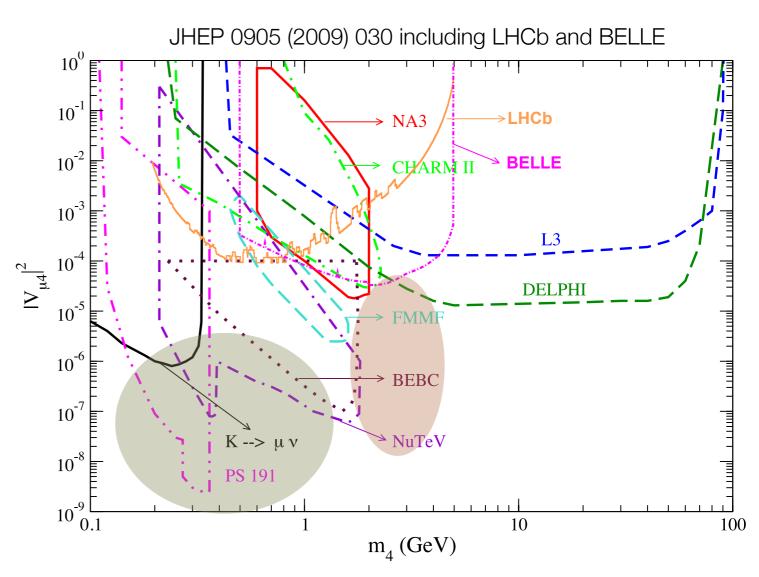
Federico Leo Redi


Imperial College London On behalf of the LHCb Collaboration

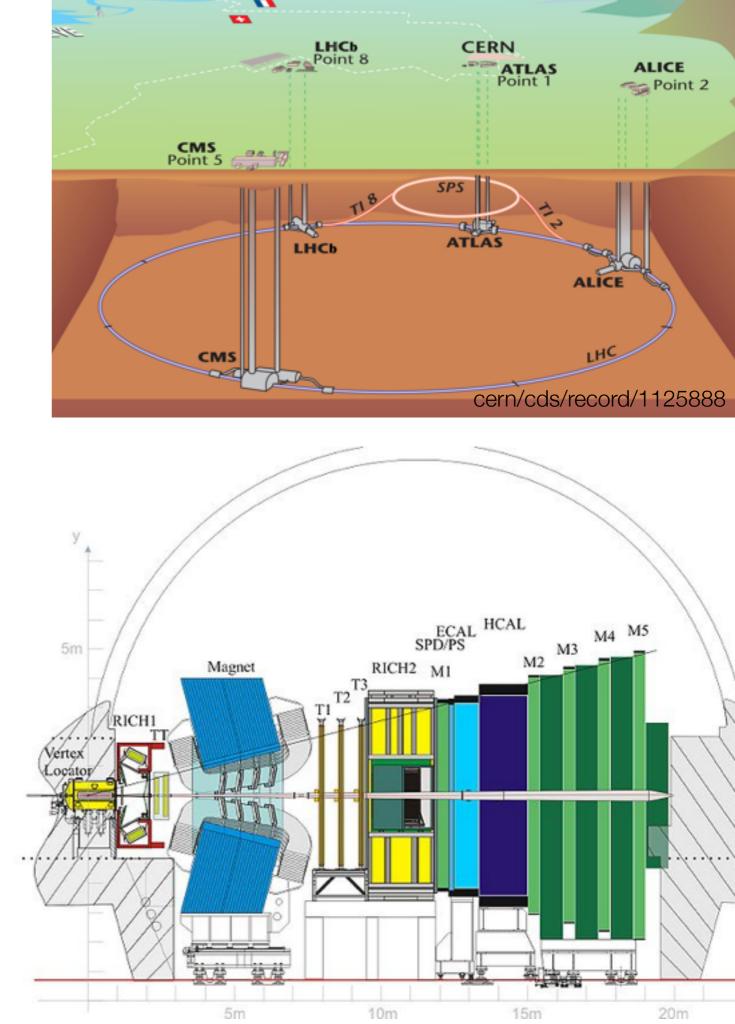

Institute of Physics Joint annual HEPP and APP conference 2016

Motivation

Neutrinoless double beta decay

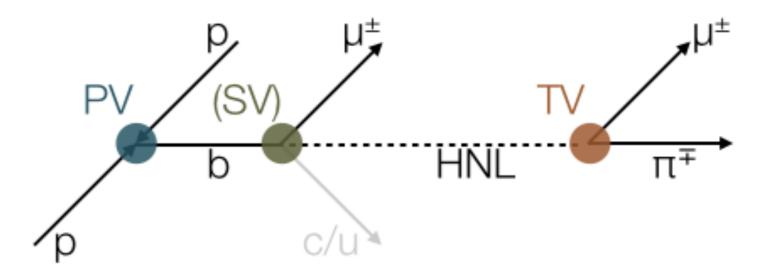

Heavy right handed neutrinos in *b* decays

Present limits


- Search for new particle(s) that exist in addition to the SM neutrinos.
- Strong theoretical motivation backing this search: vMSM (Shaposhnikov et.al.).
- **LHCb** is only competitive in a region of phase space above charm mass.
- Next generation experiment
 SHiP focuses on neutrinos from charm to cover the 0.5 – 2.0 GeV region.
 arXiv:1504.04855 arXiv:1504.04956

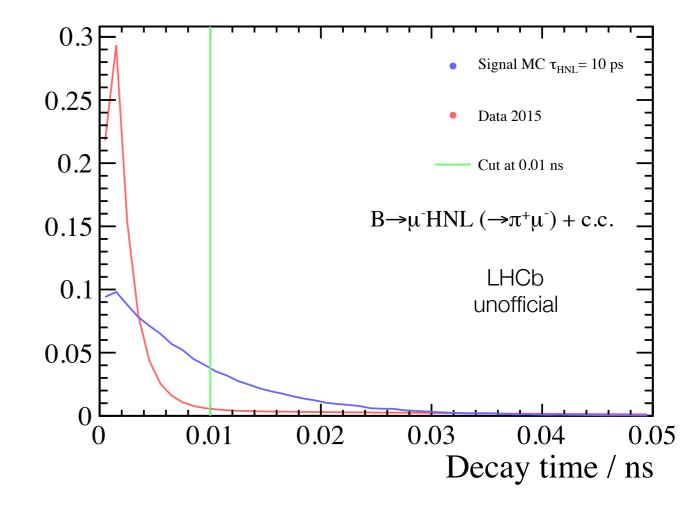
The LHCb detector

- **LHCb** is a dedicated flavour experiment in the forward region at the **LHC** $(1.9 < \eta < 4.9)$.
 - Down to 10 µm vertex reconstruction precision.
 - 98% µ id efficiency.
- Collected 3.0 fb⁻¹ from Run1 at 7 and 8 TeV pp collisions.
- **Run2** is ongoing expected 5.0 *fb*⁻¹ at 13 TeV (double the cross section).

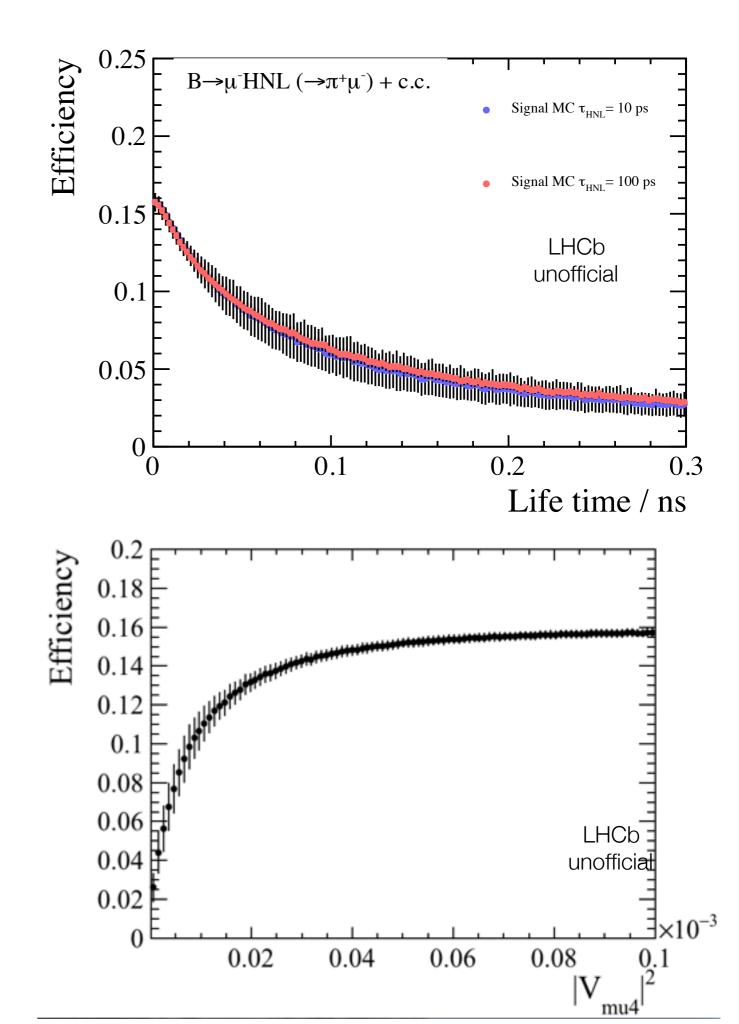


Analysis strategy/1

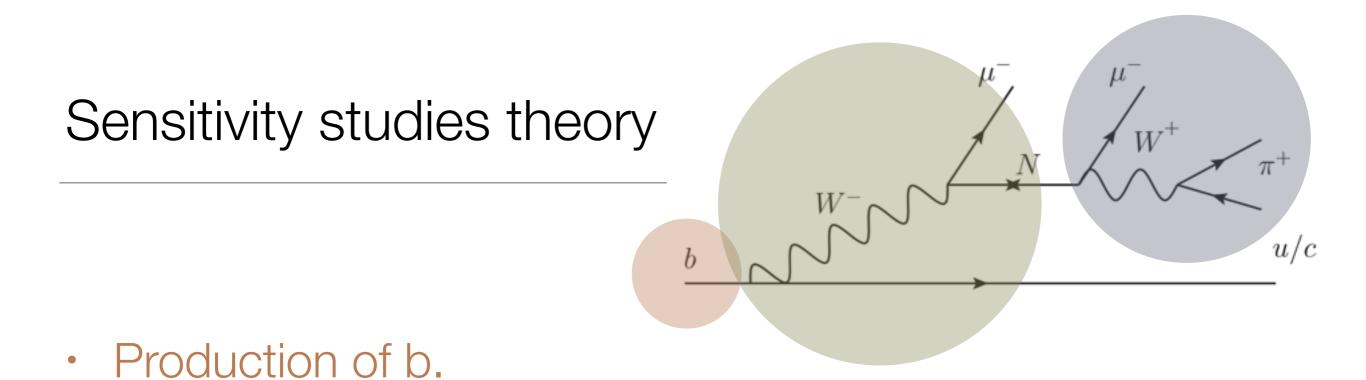
- W^- N W^+ π^+ u/c
- Previously in LHCb we have looked at specific B (D) decays into Majorana neutrinos: final states peaking at B (D) mass.
- Our analysis considers all *B* hadron decays that can produce a Majorana neutrino.
- This approach should naively be stronger by a factor of O(1000) wrt exclusive approach.


Analysis strategy/2

- **Different topology** from previous analysis.
- Selection.
- Efficiency correction.
- Calculation of coupling limit.


Selection

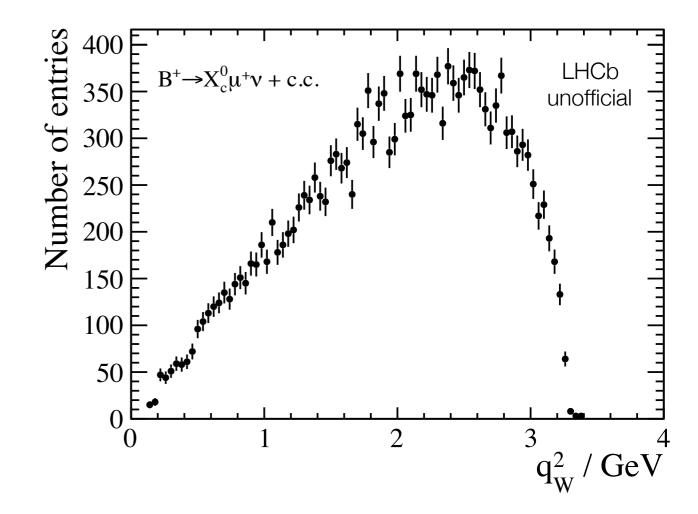
- Two µ must be of the same sign - help to reduce the background.
- Split data sample in **two**: one for prompt and the other for displaced candidates.
- Some kinematic variables can be used for cut based selection, some others can be fed into an MVA.



Efficiency studies

- Calculate efficiency as a function of lifetime and coupling.
- Do this for each value of Majorana mass.
- Lifetime inversely proportional to coupling.

8



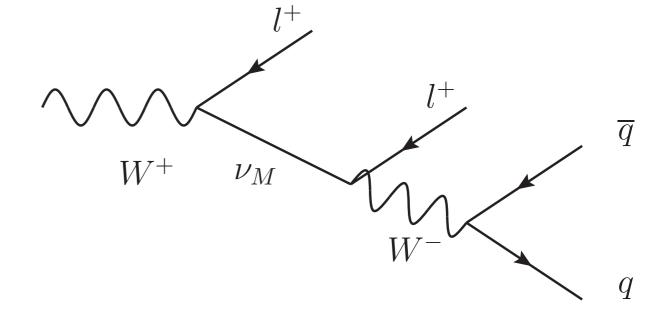
- Production and decay of W corrected by ratio of decay of BSM to SM of W.
- Exclusive decay of N to $\pi\mu$.

detected events = $\mathcal{L} \times \sigma(b\bar{b}) \times \text{eff} \times \mathcal{B}(X_b \to X\mu\nu) \times \mathcal{B}(W \to \mu N) / \mathcal{B}(W \to \mu\nu) \times \mathcal{B}(N \to \mu\pi)$

Sensitivity studies/2

- Need q² (invariant mass of final state particles) distribution of W because of off-shell production.
- In addition to *b*->*c* transitions we include *b*->*u* transition,
 B_c annihilation, etc.
- Future steps involve the finalisation of the background studies and analysis of the possible systematic uncertainties.

Conclusion


- We have shown complementarity of heavy right handed neutrinos in *b* decays wrt neutrinoless double beta decay.
- Different experiments can cover different phase space regions for Majorana mass.
- Analysis strategy will allow improvement on past results.
- Sensitivity studies completed, next steps involve background studies and systematic uncertainties.

Thanks. Federico Leo Redi.

Majorana neutrinos at LHCb

- Searches for the decays of heavy mesons to final states with two same sign leptons.
 - Complementary to other searches, such as in neutrino-less double β decay (only coupling to e).
 - LHCb searches (will) constrain models like the type-I seesaw model with three right-handed neutrinos.
- Very stringent limits are possible for rare B and D decays.

- Particularly true for on- and off-shell Majorana Neutrinos in B and D decays.
- A. Phys.Rev.Lett. 112 (2014) 131802: $h^{\mp} = \pi^{\mp}$, with 3.0 fb⁻¹ (7 TeV and 8 TeV).
- B. Phys.Rev. D85 (2012) 112004: $h^{\mp} = D^{\mp}, D^{*\mp}, D^{\mp}_{s}$ and $D^{0}\pi^{\mp}$, with ~40 pb⁻¹ (7 TeV).
- C. Phys.Rev.Lett. 108 (2012) 101601: $h^{\mp} = K^{\mp}$ or π^{\mp} , with ~36 pb⁻¹ (7 TeV).

Federico Redi - Imperial College London

Sensitivity studies theory

- Production of b
- Production and decay of W: taken from the PDG.
 - Corrected by ratio of decay of BSM to SM of W: here we used the ratio of SM to BSM W production:

b

• From PhysRevD.29.2539 we take the BSM part of the equation, namely:

$$B(W \rightarrow l + \overline{N}) \simeq 0.08 |U|^2 \left[1 - \frac{M_N^2}{M_W^2} \right]^2 \left[1 + \frac{M_N^2}{2M_W^2} \right],$$

- Where we have used the q2 distribution of the daughters of the off-shell W.
- Exclusive decay of N to πµ. To do this we take the same model as the one used in a previous analysis (LHCb-PAPER-2013-064) which was based upon arXiv:0901.3589.

$$\Gamma^{\ell P} \equiv \Gamma(N_4 \to \ell^- P^+) = \frac{G_F^2}{16\pi} f_P^2 |V_{q\bar{q}'}|^2 |V_{\ell 4}|^2 m_4^3,$$

$$\Gamma_N = \left[3.95m_N^3 + 2.00m_N^5 (1.44m_N^3 + 1.14)\right] 10^{-13} |V_{\mu 4}|^2,$$

• Which therefore gives:

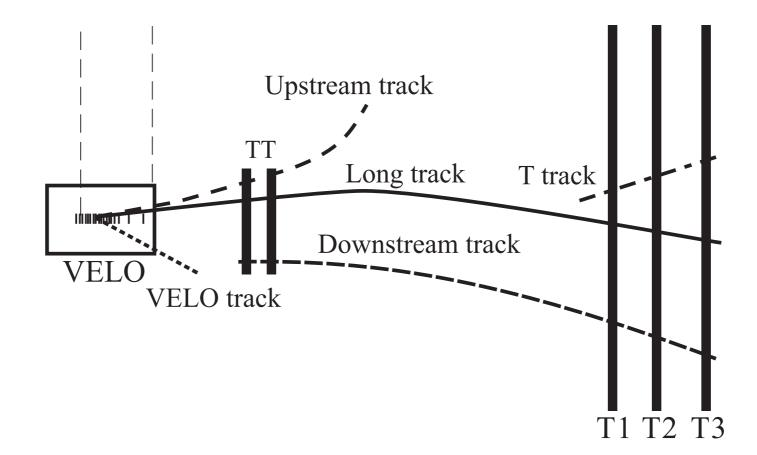
detected events = $\mathcal{L} \times \sigma(b\bar{b}) \times \text{eff} \times \mathcal{B}(X_b \to X\mu\nu) \times \mathcal{B}(W \to \mu N) / \mathcal{B}(W \to \mu\nu) \times \mathcal{B}(N \to \mu\pi)$

Federico Redi - Imperial College London

 W^+

 π

u/c


Stripping cuts

B cuts		μ cuts	
m	$\in [1500, 6500] \text{ MeV}$	Track χ^2/dof	< 4
Vertex χ^2/dof	< 4	p	> 3000
DIRA	< 0.99	p_{T}	> 250
$(\Lambda^0 \text{ vertex} - B \text{ vertex})_z$	>0 mm	Track ghost probability	< 0.5
Λ^0 cuts		$\text{PID}\mu\text{-}\text{PID}\pi$	> 0
$\Lambda^0 \ parameters$		$PID\mu$ - $PIDp$	> 0
$(\Lambda^0 \text{ vertex} - PV)\chi^2$	> 100	$PID\mu$ - $PIDK$	> 0
m	$> 1500 \mathrm{MeV}$	min IP χ^2	> 12
p_{T}	$> 700 \mathrm{MeV}$		
Vertex χ^2/dof	< 10		
π parameters			
p	$> 2000 { m MeV}$		
p_{T}	$> 250 { m MeV}$		
Track χ^2/dof	> 4		
min IP χ^2	> 10		

- Timing is low, rate is low at ~ 0.05 % even with no tight cuts applied: thanks to same sign muon signature.
- Will be able to adjust the cuts when tested on 14 TeV data.
- Will be run also on 3 invfb of data for the incremental restripping.

Federico Redi - Imperial College London

LHCb track types

Limits in case of no background

	$1 - \alpha = 90\%$		$1 - \alpha = 95\%$	
n	$\nu_{ m lo}$	$\nu_{\rm up}$	$\nu_{ m lo}$	$\nu_{\rm up}$
0	_	2.30	_	3.00
1	0.105	3.89	0.051	4.74
2	0.532	5.32	0.355	6.30
3	1.10	6.68	0.818	7.75
4	1.74	7.99	1.37	9.15
5	2.43	9.27	1.97	10.51
6	3.15	10.53	2.61	11.84
7	3.89	11.77	3.29	13.15
8	4.66	12.99	3.98	14.43
9	5.43	14.21	4.70	15.71
10	6.22	15.41	5.43	16.96