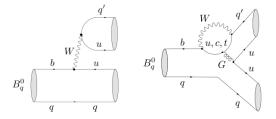
Lifetime Measurements and Time Dependent CP Violation of $B \rightarrow h^+ h'^-$ IoP - Joint annual HEPP and APP conference

Sarah Karodia on behalf of the LHCb collaboration.

University of Glasgow

March 21, 2016

Experimental Particle Physics


Motivation

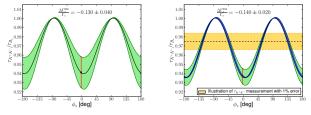
- 2 Analysis Method
- 3 Selection
- 4 Mass Fits
- 5 Lifetime and Time Dependent Asymmetry Fits

6 Summary

Introduction

- Lifetime measurements of six different $B \to h^+ h'^-$ decay modes, $B_s^0 \to K^+ K^-$, $B_d^0 \to \pi^+ \pi^-$, $B_d^0 \to K^- \pi^+$, $B_s^0 \to \pi^+ K^-$, $\Lambda_b^0 \to p^+ K^-$ and $\Lambda_b^0 \to p^+ \pi^-$.
- Measurements of time dependent CP violation of the $B_s^0 \to K^+ K^-$ and the $B_d^0 \to \pi^+ \pi^-$ decay modes.
- $B \rightarrow h^+ h'^-$ decays are dominated by tree and penguin processes.
- Charge conjugation implied throughout this talk.

• Tree and penguin processes are of comparable size. New Physics can compete with Standard Model processes.


Motivation

- B → h⁺h'⁻ modes provide opportunity to perform high precision lifetime measurements.
- $B_s^0 \to K^+ K^-$ effective lifetime can be used to constrain the B_s^0 mixing phase ϕ_s .

$$\tau_{K^+K^-} = \frac{\int_0^\infty t \left\langle \Gamma(B_{\rm s}(t) \to K^+K^-) \right\rangle dt}{\int_0^\infty \left\langle \Gamma(B_{\rm s}(t) \to K^+K^-) \right\rangle dt}$$

• Can be written in terms of $y_s = \Delta \Gamma_s / 2\Gamma_s$ and the decay rate asymmetry $A_{\Delta\Gamma}$;

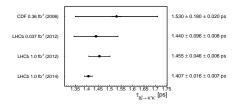
$$\frac{\tau_{K^+K^-}}{\tau_{B_s}} = \frac{1}{1-y_s^2} \left[\frac{1+2A_{\Delta\Gamma}y_s+y_s^2}{1+A_{\Delta\Gamma}y_s} \right] = 1 + A_{\Delta\Gamma}y_s + (2-A_{\Delta\Gamma}^2)y_s^2 + \mathcal{O}(y_s^3).$$

Eur. Phys. J C71 (2011) 1531 (arXiv:0705.1121):

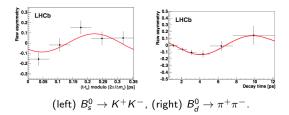
Left plot shows dependence of $\tau_{K^+K^-}/\tau_{B_s}$ on the B_s mixing phase. Right plot shows impact of measurement with 1% uncertainty.

Sarah Karodia (UoG)

Time dependent analysis of $B \rightarrow h^+ h'^-$

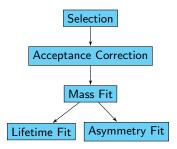

- Direct and Mixing CP asymmetries can be measured by time dependent analysis of the decay channels $B_s^0 \to K^+ K^-$ and $B_d^0 \to \pi^+ \pi^-$.
- B⁰_s → K⁺K[−] and B⁰_d → π⁺π[−] have approximate U-spin flavour symmetry through interchange of d and s quarks. See Slide 2.
- Measurements of experimental observables of these decays can be used to extract the unitary triangle angle γ .
- Time dependent CP asymmetry for neutral B mesons decaying to a CP eigenstate *f* can be written as

$$A_{CP}(t) = \frac{\Gamma(B_q^0(t) \to f) - \Gamma(\overline{B_q^0}(t) \to f)}{\Gamma(B_q^0(t) \to f) + \Gamma(\overline{B_q^0})(t) \to f)}$$
$$A_{CP}(t) \approx -C_f \cos(\Delta m t) + S_f \sin(\Delta m t),$$


• where C_f is the direct CP violation, S_f is the mixing induced CP violation.

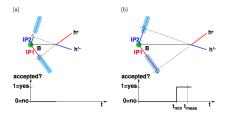
Experimental Status

- Previous analyses use 1/3 of available data sample.
- LHCb results with 1 fb⁻¹ of data:
- 2011 lifetime analysis, Phys.Lett.B736 (2014) 446-454 (arXiv:1406.7204) results: $\tau_{B_s^0 \to K^+K^-} = 1.407 \pm 0.016 \pm 0.007$ ps, $\tau_{B_d^0 \to K^-\pi^+} = 1.524 \pm 0.011 \pm 0.004$ ps, $\tau_{B_s^0 \to \pi^+K^-} = 1.60 \pm 0.06 \pm 0.01$ ps.



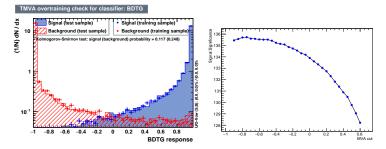
• 2011 time dependent CP violation, JHEP 10 (2013) 183 (arXiv:1308.1428v2): $C_{KK} = 0.14 \pm 0.11 \pm 0.03$, $S_{KK} = 0.30 \pm 0.12 \pm 0.04$. $C_{\pi\pi} = -0.38 \pm 0.15 \pm 0.02$, $S_{\pi\pi} = -0.71 \pm 0.13 \pm 0.02$,

Analysis


- Using the full available data sample; 3 fb⁻¹ of run1 (2011 and 2012) data.
- Analysis strategy:

- Using same event selection for lifetime and CPV analyses.
- Events selected using multivariate analysis (MVA) methods, which removes combinatorial background, and then particle identification (PID) selections, which separate final states i.e. KK, $\pi\pi$, πK , pK and $p\pi$.
- Simultaneous fits for all final states.

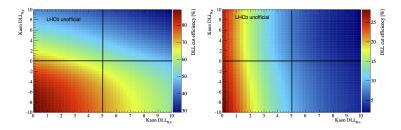
Acceptance Correction


- Data driven method that determines the acceptance function on an event by event basis.
- Acceptance is either zero (rejected) or one (accepted). Shows intervals of decay time where an event is accepted based on applied cuts.
- Uses the fact that mother decay time is independent of daughter kinematics.
- Can move the primary vertex along mother momentum whilst daughter kinematics remain the same.
- The decision can be evaluated varying decay time.

- Example: IP selection. The blue area shows where the track is accepted. In (a) IP2 is too small and in (b) it lies within the accepted region.
- OPU intensive.

MVA Selection

- Preselections applied to select $B \rightarrow h^+ h'^-$ candidates.
- The same BDT is used to remove combinatorial backgrounds for all final states.
- Trained on signal of MC12 $B_s^0 \rightarrow K^+K^-$ and background of upper side band data under *KK* hypothesis, 5500 $< m_B < 5800 \text{ MeV}/c^2$.

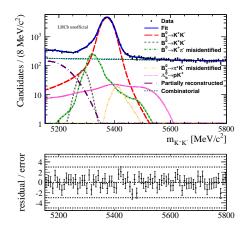

- After looking at $B_s^0 \to K^+ K^-$ signal significance $(S/\sqrt{S+B})$ decided on cut at > -0.8.
- Tight selection chosen to minimise potential systematics.

Particle Identification Selection

- $B \rightarrow h^+ h'^-$ misidentified backgrounds are a dominant source of systematics.
- Mis-id rates used to measure cross feeds between different modes.
- PID selections that gave a tolerable level of mis-ID rates were chosen.
- Example:

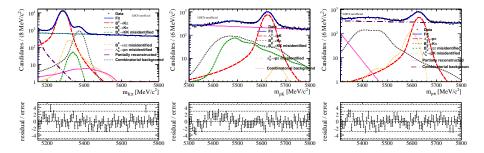
(left) $B_s^0 \to K^+ K^-$ selection efficiencies vs PID selection on daughter tracks for Kaon-Pion and Kaon-Proton separation.

(right) Misidentification rates vs PID selection on daughter tracks of $B^0 \to K^+\pi^$ in $B_s^0 \to K^+K^-$.



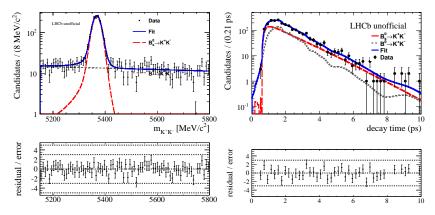
• Chose selection at (5,0), shown on figures.

Sarah Karodia (UoG)


Mass Distributions: KK 2011 and 2012 data

- Signal shape is fitted with a double crystal ball function, tail parameters extracted from MC.
- B → h⁺h'⁻ backgrounds misidentified from their PID assignments are fitted with templates. Shapes from MC.
- Single partially reconstructed background made up of 3-body decays that could be mis-reconstructed as signal with one lost final state particle, possibly with a single misidentification. Parameters are obtained from MC.
- The fit procedures for the Kπ, ππ, pK and pπ mass spectrum are the same as the KK.

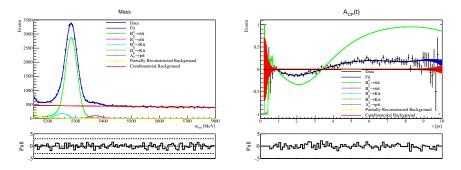
• 29514 \pm 269 $B_s^0 \rightarrow K^+ K^-$ candidates (64% purity over mass range).


Mass Distributions: $K\pi$, $p\pi$, pK, 2011 and 2012 data

- 81908 \pm 574 $B^0_d \rightarrow K^+\pi^-$ candidates (60% purity),
- 5836 \pm 417 $B_s^0 \rightarrow \pi^+ K^-$ candidates (4.2% purity),
- 6339 \pm 203 $\Lambda_b^0 \rightarrow p^+ K^-$ candidates (22% purity),
- 4375 \pm 222 $\Lambda_b^0 \rightarrow p^+ \pi^-$ candidates (13% purity),
- $\pi\pi$ fit still in progress.

Lifetime Fitter

• Results on sample of $B_s^0 \to K^+ K^-$ simulated data.



- Acceptance corrected for on this simulated data.
- Lifetime correctly recovered.

Sarah Karodia (UoG)

Time Dependent Asymmetry Fitter

• Time dependent asymmetry fit on simplified simulations of $B_d^0 \to \pi^+ \pi^-$.

• Recovered correct values from simplified simulations.

- Performing lifetime measurements of six decay modes; $B_s^0 \to K^+ K^-$, $B_d^0 \to \pi^+ \pi^-$, $B_d^0 \to K^- \pi^+$, $B_s^0 \to \pi^+ K^-$, $\Lambda_b^0 \to p^+ K^-$ and $\Lambda_b^0 \to p^+ \pi^-$.
- Time dependent CP violation in $B^0_s \to K^+ K^-$ and the $B^0_d \to \pi^+ \pi^-$ being measured.
- Using full run 1 statistics.
- The analysis is at a mature stage.
- Event selection is finalised for the six $B \rightarrow h^+ h'^-$ decay modes.
- Aiming for increase on precision from run 1 with improved method and higher statistics.