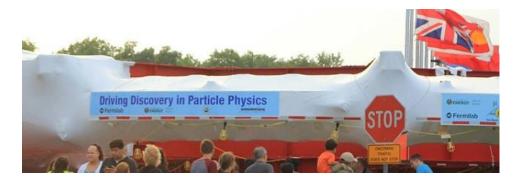
Development of a ³He-based absolute calibration magnetometer for the muon g-2 experiment

- New Muon g-2 Experiment
- Magnetometers and the magnetic field standard
- Proposed ³He probe: optical pumping, lasers, gas cells, polarimetry
- Towards a ³He magnetometry standard for g-2

New Fermilab Muon g-2 Experiment


Muon anomalous magnetic dipole moment

$$a_{\mu} = \frac{1}{2}(g-2)$$

$$a_{\mu} = a_{\mu}^{QED} + a_{\mu}^{Hadronic} + a_{\mu}^{Weak} + \dots New \ physics?$$

Standard Model: $a_{\mu} = 116\ 591\ 802\ \pm\ 49\ \times\ 10^{-11}\ (0.42\ ppm)$ BNL measurement: $a_{\mu} = 116\ 592\ 089\ \pm\ 63\ \times\ 10^{-11}\ (0.54\ ppm)$ Discrepancy ~3.6 σ

New experiment to reach 140ppb

Probe for signs of SUSY and alternative theories

μ

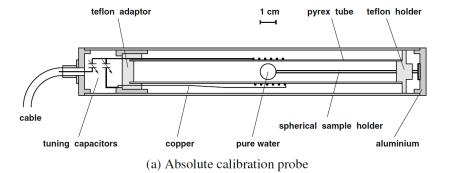
The g-2 magnetic field measurement

Shim 1.45T field to 1ppm Measure the magnitude to 70ppb using NMR probes

Muon anomalous spin precession frequency – measured from oscillation frequency of positrons from muon decay

$$a_{\mu} = \frac{m_{\mu}\omega_{a}}{eB} = \frac{\omega_{a}/\omega_{p}}{\mu_{\mu^{+}}/\mu_{p} - \omega_{a}/\omega_{p}}$$

(Measured by E1054 muonium experiment)


Proton precession frequency measured with NMR magnetometer probes

378 fixed probes, plus mobile trolley probes must be calibrated against standard probe

Absolute Water Calibration Probe

- 50ppb accuracy for Brookhaven experiment
- Target 35ppb for Fermilab

$$B_{p} = (1 - \delta_{t})B \qquad \delta_{t} = \sigma_{H_{2}O} + \delta_{b} + \delta_{p} + \delta_{s}$$

Shifts due to bulk shielding ($\delta_{\rm b}$), paramagnetic impurities in sample ($\delta_{\rm p}$) and probe structure ($\delta_{\rm s}$)

Protons in spherical water sample

$$\sigma_{H_2O} = \left(1 - \frac{\mu'_p}{\mu_p}\right) = 25,702(14) \times 10^{-6}$$

Philips et al. Metrologia 1977, 13, 179-195

Free protons

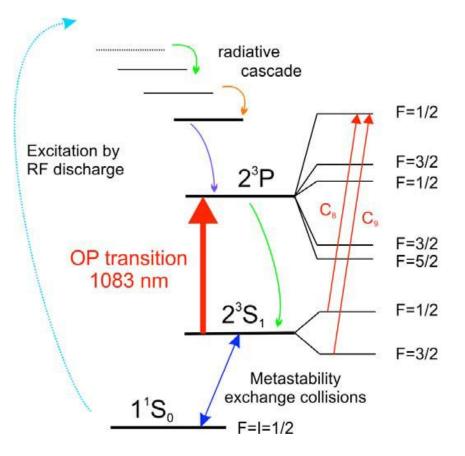
Proposed ³He Absolute Calibration Probe

Advantages of ³He:

- Lower uncertainty on diamagnetic shielding,
- Temperature coefficient 100 times smaller,
- Negligible susceptibility no sample shape dependence

$$\sigma_{H_2O} = [25.702(14) + 0.01036(30) \times (T - 34.7^{\circ}C)] \times 10^{-6}$$

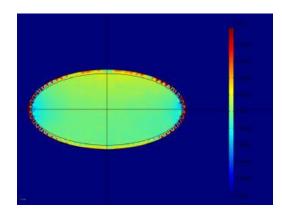
$$\sigma_{^{3}He} = 59.967 \, 43(10) \times 10^{-6}$$


 Need to polarise sufficient amount of ³He to get useful NMR signal

	Water probe	³ He probe
NMR detection and measurement	15	2
Field homogeneity	10	10
Materials outside probe	15	15
Sample holder shape	15	negligible
Probe materials	10	10
Diamagnetic shielding	14	negligible
Temperature effect	10	negligible
Total	34ppb	21ppb

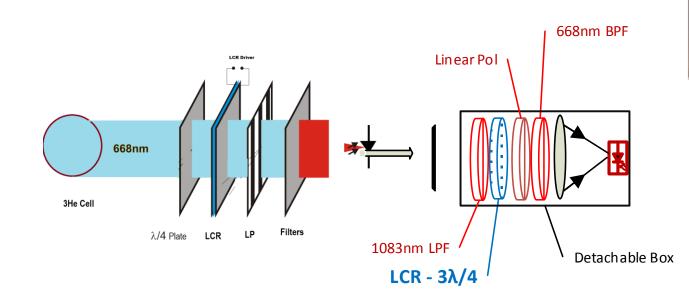
Polarisation of ³He for NMR

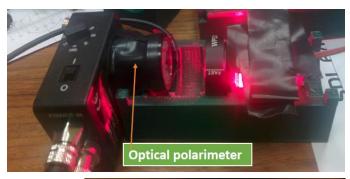
Metastability Exchange Optical Pumping (MEOP)

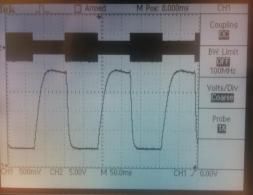

- RF discharge excites ³He atoms to the metastable ³S₁ state.
- Circularly polarised 1083nm laser light applied to cell to optically pump excited atoms
- Electronic polarization transferred to the nucleus by hyperfine interaction.
- Metastable state polarization transferred to ground state through collisions

 \rightarrow Require 1083nm laser 100mW

³He cells

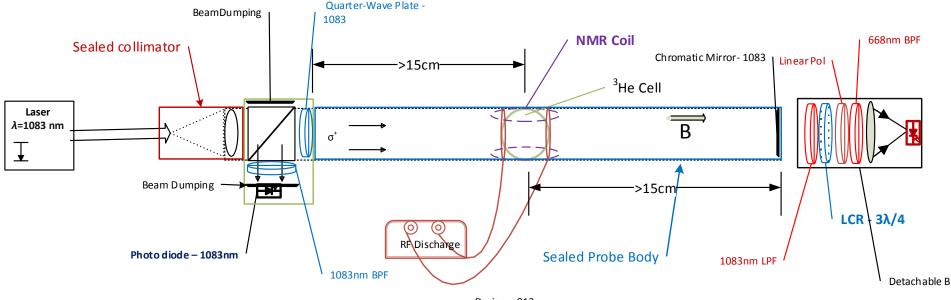

- Supplied by Tim Chupp, University of Michigan
- Custom glassware
- Aggressive cleaning procedure
- Fill with ³He from dedicated gas handling system.
- Spherical cell reduced inhomogeneities due to cell walls

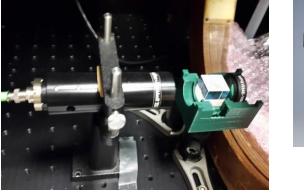




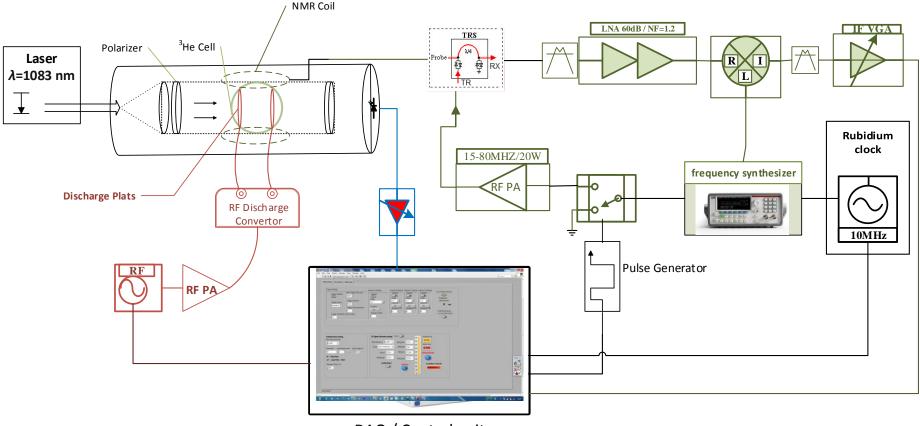
Monitoring the ³He Polarimetry

- Essential to tune laser wavelength to optical pumping transitions
- Measure circular polarization of 668nm light emitted by the 3¹D₂ to 2¹P₁ transitions.
- Optical polarimeter using a nematic liquid crystal retarder and a photodiode




Liquid Crystal polarimetry for metastability exchange optical pumping of ³He, JD Maxwell, CS Epstein and RG Miller, Nucl. Instrum. Meth. A 764 (2014) 215.

Proposed Design for ³He probe



Proposed Design for NMR Electronics

DAQ / Control unit

- 47 MHz Free Induction Decay signal
- Synthesiser locked to rubidium clock

Towards a ³He magnetometry calibration for g–2

- A ³He absolute calibration probe will provide
 - Important cross-check of the magnetic field calibration for Brookhaven and Fermilab g–2 experiments
 - Further improve uncertainty on calibration below 30ppb
- R&D programme at Oxford a step towards the construction of g–2 calibration magnetometer
- Cross calibration and characterization to be done in test magnet at Argonne National Laboratory
- Long term future Could ³He replace the proton as a magnetometer standard for g–2?

