

GENERALISATION IN MACHINE LEARNING FOR HEP

TOM STEVENSON

IOP CONFERENCE, UNIVERSITY OF SUSSEX 22 MARCH 2016

Generalisation

- Motivation and the Issue
- Hold-out validation
- Cross-validation
- Physics Example
- Summary

MACHINE LEARNING

Source: deepmind.com

- Wide field:
 - Spam filtering
 - Hand writing recognition
 - Beating human at Go
- Used in HEP to separate small signals from large backgrounds.
- Many different algorithms:
 - Boosted Decision Trees
 - Neural Networks
 - Support Vector Machines

MOTIVATION AND THE ISSUE

- Need confidence that the trained MVA is robust and the performance on unseen samples can be accurately predicted, i.e. generalised.
- This motivates validation techniques which are required for:
 - Model Selection:
 - Most methods have at least one free parameter e.g.
 - BDT #trees, min node size, etc.
 - SVM kernel function, kernel parameters, cost, etc.
 - How are these parameters of models "optimally" selected?
 - Performance Estimation:
 - How does the chosen model perform?
 - Usually true error rate is used (misclassification rate for the entire dataset).

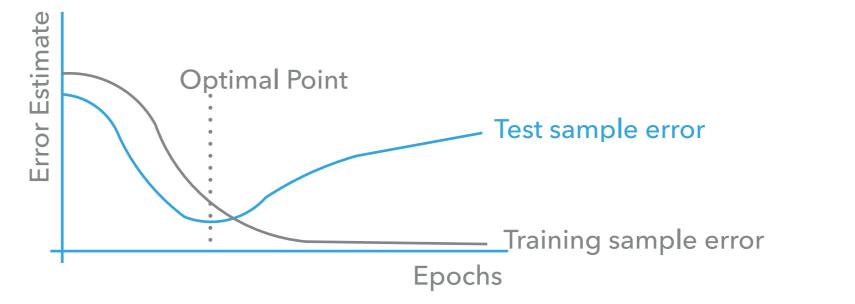
MOTIVATION AND THE ISSUE

- For an unlimited dataset these issues are trivial, simply iterate through parameters and find model with lowest error rate.
- In reality datasets are smaller than we would like.
- Naïvely use whole dataset to select and train classifier and to estimate error.
 - Leads to overfitting/overtraining as classifier learns fluctuations in the dataset and performs worse on unseen data.
 - Overfitting more distinct for classifiers with large number of tuneable parameters.
 - Also gives overly optimistic estimation of error rate.

HOLD-OUT VALIDATION

Potential way to overcome these issues is use hold-out technique, splitting the dataset into training and test subsamples.

Can use these datasets to select "optimal" parameters, for example back-propagation for MLP.



Can give misleading error estimate depending on how the data is split.

K-FOLD CROSS-VALIDATION

- May not be able to reserve a large portion of data for testing, so hold-out method may not be viable.
- Instead can use k-fold cross-validation:

Dataset						
Fold 1	Fold 2	Fold 3	Fold 4	Fold 5		Fold k

- Split the dataset into k randomly sampled independent subsets (folds).
- Train classifier with k-1 folds and test with remaining fold.
- Repeat k times.
- Advantage of using the whole dataset for testing and training.
- True error rate is then estimated using average error rate:

$$E = \frac{1}{k} \sum_{i=1}^{k} E_i.$$

GENERALISATION FOR HEP

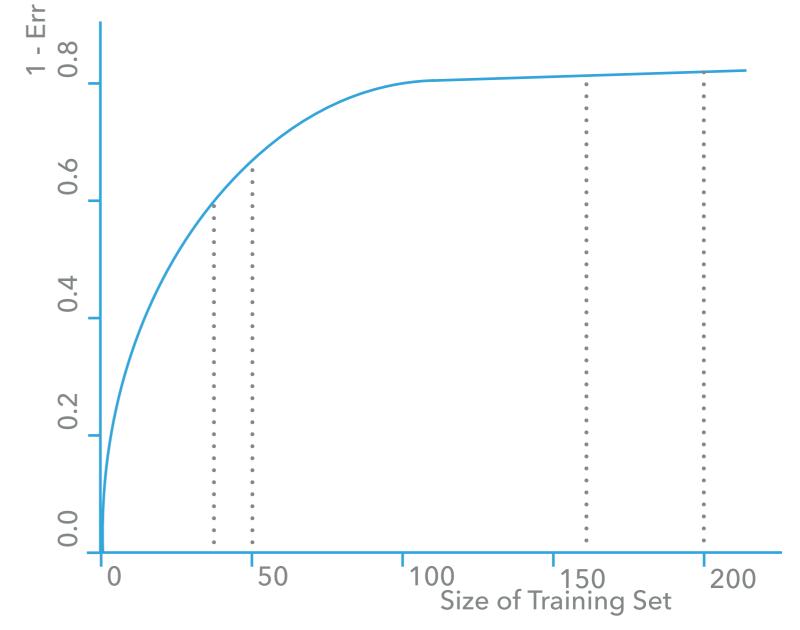
K-FOLD CROSS-VALIDATION

- How many folds???
- Large number of folds:
 - Good estimate of average error rate (bias of the estimator is small).
 - Variance of the estimator is large.
 - Computational time is long.
- Small number of folds:
 - > Poor estimate of average error rate (bias of the estimator is large).
 - Variance of the estimator is small.
 - Computational time is relatively short.
- In reality choice is motivated by the size of the dataset, i.e. sparse dataset need extreme of leave-one-out method to train on as much data as possible.

GENERALISATION FOR HEP

K-FOLD CROSS-VALIDATION

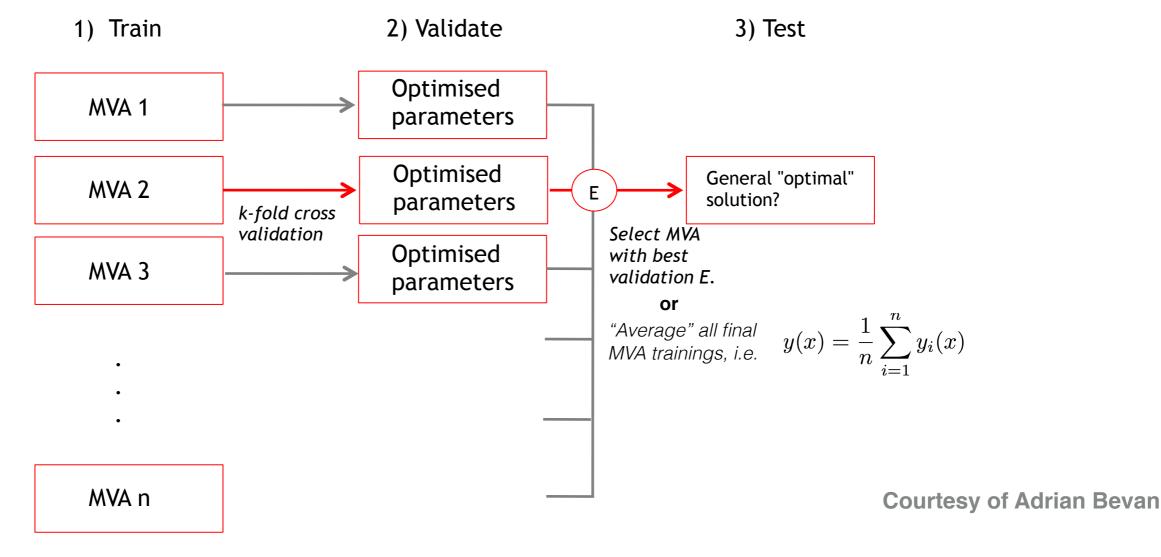
- Hypothetical example:
 - For sample size of 200, 5 fold CV will estimate the error with similar performance on training set of 160 to that of the full sample.
 - However for sample of 50,
 5 fold CV will give a larger error than not using CV.



Common choices are between 5 & 10 folds, however k should be determined for the given problem.

K-FOLD CROSS-VALIDATION

Ideally 3 statistically independent datasets.



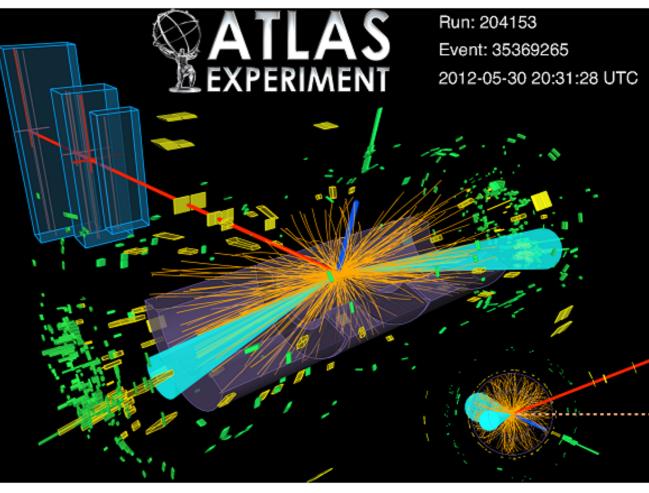
- "Best" performing MVA doesn't necessarily give the desired output.
- Take aggregated output of final trained MVAs on test sample in some form of average.

TOM STEVENSON

$H \rightarrow \tau \tau EXAMPLE$

• $H \rightarrow \tau \tau$ <u>Higgs machine learning challenge dataset</u> example.

- First 16 variables chosen (not an optimised analysis).
- Following procedure outlined, using macro for TMVA.
- 5000 signal and 5000 background events.
- 3-fold CV BDT presented (next slide) with hold-out validated BDT for comparison.
 - Best performing CV BDT has spiky structure due to picking low number of trees.
 - CV averaged BDT has better agreement between training and testing samples than hold-out BDT.
 - Potentially more generalised.

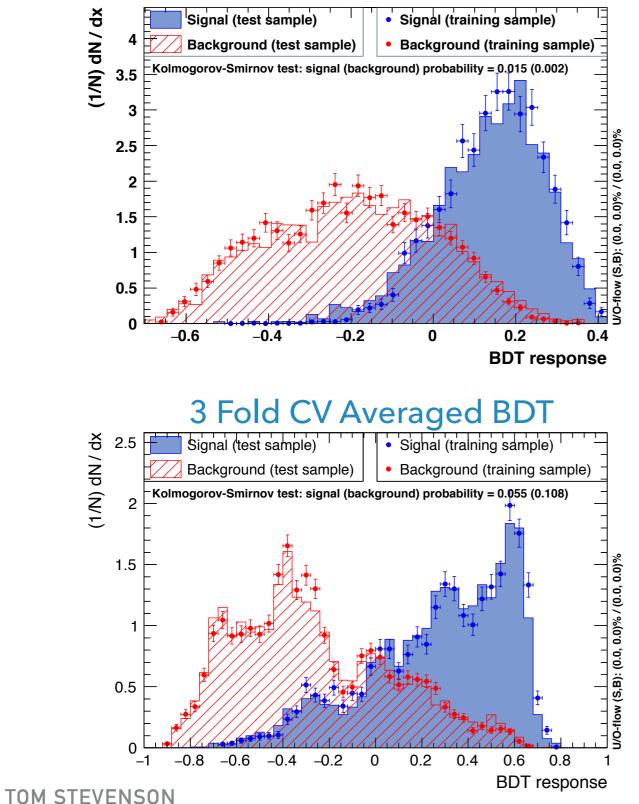


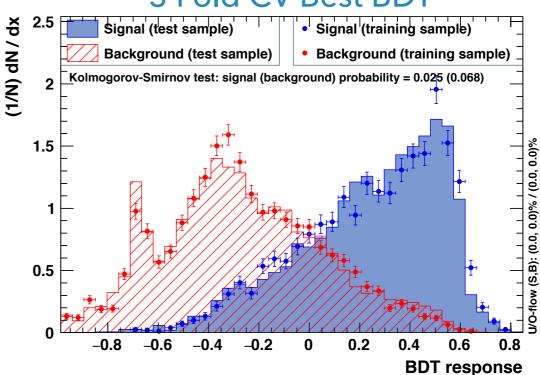
GENERALISATION FOR HEP

12

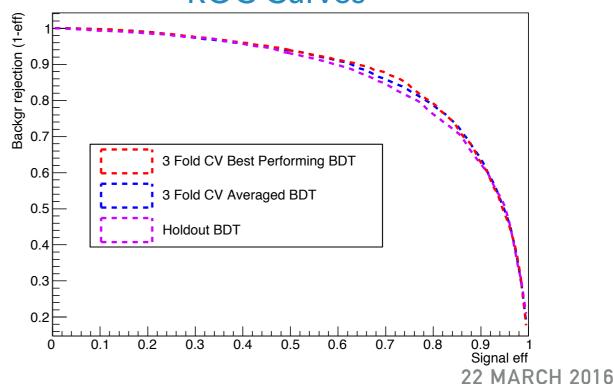
$H \rightarrow \tau \tau$ EXAMPLE

Holdout BDT





ROC Curves



3 Fold CV Best BDT

- ► HEP generally uses hold-out CV.
- k-fold CV used in the wider ML community.
- A multistage training/validation/testing process have been detailed.
- Example macro to perform k-fold CV with TMVA soon available in ROOT release.
- For H→TT example k-fold CV shows improved generalisation when compared with hold-out CV.