



## Commissioning and Calibration of the DEAP-3600 Dark Matter Detector

Nasim Fatemighomi
(for the DEAP-3600 collaboration)
IOP HEPP and APP conference
21-23 March 2016, University of Sussex

Words The Control of the Control of

Liquid argon as a dark matter target



- Ionization of ultra high purity liquid argon (LAr) allows the production of excited dimers (singlet and triplet states)
- The decay of these states into the repulsive ground state is the origin of argon scintillation light (128 nm)
- Electronic and nuclear recoils produce different ratios of singlet and triplet states
- The singlet and triplet states have well separated lifetimes  $^1$  (7ns versus 1.6  $\mu s$ )
- Electronic and nuclear recoils have different timing profiles

<sup>&</sup>lt;sup>1.</sup> Hitachi A., et al. Phy. Rev. B 27:5279, May 1983

#### LAr pulse shape discrimination (PSD)



Electronic signal from PMT: photo electron counting  $(F_{prompt}=N_{prompt}/N_{total})$ 



Single phase LAr: scintillation channel is sufficient to provide excellent PSD against electronic recoil background and no ionization readout is needed

#### Glove box Central support assembly (Deck elevation) Steel shell neck (Outer neck) Inner neck (green) Vacuum jacketed neck (orange) Cooling coil Acrylic flow guides 48 Muon veto PMTs 255 PMTs & light guides Acrylic vessel Steel shell 3600 kg liquid argon Filler blocks Foam blocks behind PMTs and filler blocks Bottom spring support

#### DEAP-3600 detector

- Situated at SNOLAB, Sudbury, ON, Canada
- 3600 kg LAr target (1000 kg fiducial volume)

Ultraclean Acrylic vessel (AV)

- Resurfaced in-situ to remove Rn daughters after construction
- Deposited TPB uniformly on AV (shifting VUV light to blue spectrum)
- 255 PMTs (8")
- Shielding against
  - Neutrons: Light guides and polyethylene filler blocks
  - Gammas and cosmic muons: 8 m diameter ultra pure water veto tank, instrumented with PMTs, surrounds the steel spherical shell
- 8 PE/keV<sub>ee</sub> projected light yield

### Projected Backgrounds

- β/γ events from natural Ar: <sup>39</sup>Ar (1 Bq/kg)
  - PSD reduces  $^{39}$ Ar by >  $10^{10}$
- Neutron recoils: (α,n) fission and μinduced
  - Controlled by strict material screening and assay
  - Shielding: Light guides and polyethylene filler blocks, instrumented water veto
- Surfaces: Rn daughters
  - Ultra pure AV (<sup>210</sup>Pb purity < 1.1 x10<sup>-19</sup> g/g for 0.1 events/3 years )
  - Resurfacing acrylic vessel to reach bulk background levels
  - Passivation of argon wetted components
  - Limited exposure to radon
  - Position reconstruction + fiducialisation
    - See Navin Seeburn's talk



| Background      | Raw No. Events in energy ROI | Fiducial No.<br>Events in<br>energy ROI<br>(3 years) |
|-----------------|------------------------------|------------------------------------------------------|
| Neutron         | 30                           | <0.2                                                 |
| Surface α       | 150                          | <0.2                                                 |
| Ar-39 (natural) | 1.6 x10 <sup>9</sup>         | <0.2                                                 |

Energy ROI: 60-120 keVr

### Projected sensitivity



- An Order of magnitude increase in sensitivity over current results<sup>1</sup> at 100 GeV
- 10<sup>-46</sup> cm<sup>2</sup> sensitivity at 100 GeV for 3 years physics run with a 15 keV<sub>ee</sub> threshold

# Summer 2014

# Summer 2015

#### **Current status**

- PMT commissioning and detector optical calibration data taking since Feb 2015
- Currently cooling down the detector and taking commissioning data with gaseous Ar
- External radioactive source deployment are ongoing
- Physics data taking this spring



#### Calibration commissioning

- DAQ has been running since February 2015
- PMT charge and time calibration is now routine
- Light injection system
  - Acrylic and Aluminium Reflectors and Fibre
     Optics Systems (AARFS) operated
  - Laserball deployed before filling with Ar
- Neutron and Gamma calibration ongoing

#### **AARFS**

- Aluminium coated stubs bonded to 20 light guides around the detector
- Deliver light via fibres directed at a PMT
- Light is reflected in to the detector
- 435 nm LED
- Non-isotropic light injection





#### Uses of AARF data

- PMT response
- Scattering optical measurement
- Detector optical stability
- PMT relative efficiency
- SPE calibration



#### Uses of AARF data

- PMT response
- Scattering optical measurement
- Detector optical stability
- PMT relative efficiency
- SPE calibration

AARF calibration is currently performed once a day in order to monitor detector stability



#### Laserball

- Made of a PFA flask filled with diffuser
- Deployed at summer 2015
- Multi-wavelength laser system (375 nm, 405 nm and 445 nm)
- Sub-ns laser pulser
- Data collected at different positions and angles
- Isotropic source



#### Laserball data



#### Uses of laserball data

- Relative PMT time offset
- PMT relative efficiency
- Detector optical model









### Neutron and gamma calibration

- External Th-232 source has been deployed during vacuum and gaseous runs
- LAr calibration via tagged AmBe and <sup>22</sup>Na sources
- Equator calibration via Cal A, B and E
  - Provides equal distance calibration set at different φ (azimuth angle)
- Looped tube Cal F
  - Provides equal distance calibration set at different  $\theta$
  - Calibration of neck region
- Commissioning and gaseous Ar data taking with AmBe and <sup>22</sup>Na sources this month







#### **Summary and Conclusion**

- The construction of the DEAP-3600 has finished
- Cool down is started
- The DAQ and PMTs have been running in a stable configuration since February 2015.
- Extensive calibration program was performed before filling with Ar
- We are fine tuning the optical model of the detector using the optical calibration data
- External calibration data taking is on going
- Will start physics data taking this spring























