Standard Model measurements

Chris Hays, Oxford University

IOP Annual HEPP & APP conference 21 March 2016

Overview

- Hadron collider physics
- Parton distributions and underlying event

• Electroweak parameter measurements

Electroweak boson self-coupling constraints

Hadron collider physics

Highly relativistic (anti)proton bunches are collided inside a particle detector

Hadron collider physics

Highly relativistic (anti)proton bunches are collided inside a particle detector

Hadron collider physics

Final state of six hadronic jets

21 March 2016

C. Hays, Oxford University

LHC: 7 TeV \rightarrow 8 TeV \rightarrow 13 TeV 2011 \rightarrow 2012 \rightarrow 2015

5

Parton distribution functions

H1 and ZEUS

Empirical fit for distribution functions performed by multiple groups MMHT, CTEQ, NNPDF, HERAPDF, and ABM

HERA ep data determines bulk of structure functions

 $\sigma^{+}_{r,\,NC}$

1.4

1.2

1

0.8

0.6

0.4

0.2

• HERA NC e⁺p 0.5 fb⁻¹ √s = 318 GeV ■ HERA I Final

= 0.032

10⁴

= 0.08

 $x_{Bi} = 0.25$

Q²/GeV²

Final combination of ZEUS and H1 experimental results incorporated into HERAPDF2.0

arxiv:1506.06042

10³

10²

10

Parton distribution functions

Differential top quark production

Further probe kinematics with measurements differential in mass and rapidity of the tt pair

C. Hays, Oxford University

Parton distribution functions

Wide range of LHC data further constraining PDFs: inclusive jet, W/Z cross sections, W+charm, W/Z+jets, bb, cc

C. Hays, Oxford University

21 March 2016

Parton distribution functions

Developments from PDF4LHC

2010: First prescription for uncertainties @ LHC -- envelope of CTEQ, MSTW, NNPDF **2012**: PDF updates including fits to data at NNLO; separate α_s uncertainty

2016: Combined PDF4LHC set -- one set to rule them all

Incorporates many LHC 7/8 TeV measurements

Improved consistency in new sets: produce ensemble of sets

> Uncertainty eigenvectors also available

Currently being integrated into Run 2 analyses: Expanding implementation of correlations and in situ constraints 21 March 2016

Underlying event

Need to distinguish measurement final state from proton dissociation & secondary collisions

Non-perturbative effects: requires empirical models in Monte Carlo generators

Measurements constrain model parameters

Underlying event

Test modelling in high-Q² processes

E.g. tt production, with axis defined by p_{T} of the tt system

12

Overview

- Hadron collider physics
- Parton distributions and underlying event

• Electroweak parameter measurements

Electroweak boson self-coupling constraints

W and Z boson measurements

W/Z/Higgs physics fundamentally intertwined

Evidenced by W and Z boson masses:

Higgs vacuum expectation value Extracted from Z boson mass (v=174 GeV)

 $m_W = gv$ Weak coupling $m_Z = (g^2 + g'^2)^{1/2} v$ Extracted from muon lifetime Hypercharge coupling Extracted from electron anomalous magnetic moment

W boson gets mass from weak-charge coupling to vacuum energy Z boson gets mass from weak-charge *and* hypercharge coupling to vacuum energy

> $\mathbf{m}_{\mathbf{W}} = \mathbf{cos} \mathbf{\theta}_{\mathbf{W}} \mathbf{m}_{\mathbf{Z}}$ C. Hays, Oxford University

Completely determined at tree level given three inputs:

$$m_{W} = m_{Z} \left[\frac{1}{2} + \frac{1}{4} \left(\pi \alpha_{EM} / G_{F} m_{Z}^{2} \sqrt{2} \right) \right]^{1/2}$$

= 79 964 MeV

Next round of direct measurements will reduce uncertainty by factor of ~ 2

- Final Tevatron data (increase yield by factors of 2 & 4 for D0 & CDF)
- First LHC data (7 TeV)

Early LHC studies investigating theoretical uncertainties & detector calibration

Measurement strategy:

Measure charged lepton momentum in transverse plane $\frac{d}{d(u)}$ Infer neutrino momentum using conservation of momentum ($p_x^i = p_y^i = 0$) Fit for m_w using transverse momenta and two-dimensional "transverse mass"

Experimental and theoretical requirements:

Precise calibration of charged lepton momentum Accurate model of hadronic radiation Accurate model of longitudinal and transverse momentum of W boson (PDFs & "soft" QCD)

21 March 2016

C. Hays, Oxford University

 $m_T = \sqrt{2p_T^l \not\!\!/ p_T (1 - \cos\Delta\phi)}$

CMS-PAS-TOP-15-017

A first demonstration of muon and hadron calibrations performed by CMS

• Fit for m_{τ} after removing one muon from $Z \rightarrow \mu\mu$ data candidates (7 TeV)

Additional theoretical uncertainties in m_w measurement from PDFs and W boson p_T

• Translation from measured p_T^{Z} distribution to p_T^{W} is sensitive to initial parton flavour

Heavy flavour quarks contribute more to Z boson production

Asymmetric PDF uncertainty between W^+ and W^- production: W^+ has higher fraction of valence-quark production

ATLAS-PHYS-PUB-2014-015

18

c.f. CDF uncertainties:

Source	Uncertainty
Lepton energy scale and resolution	7
Recoil energy scale and resolution	6
Lepton tower removal	2
Backgrounds	3
PDFs	10
$p_T(W)$ model	5
Photon radiation	4
Statistical	12
Total	19

Phys Rev D 89, 072003 (2014)

Z forward-backward asymmetry

Measuring relative vector and axial couplings of Zff indirectly determines m_w

Fermions have V-A coupling to weak charge, V coupling to hypercharge

Relative V to A coupling \rightarrow relative hypercharge to weak coupling \rightarrow relative Z to W mass

Tevatron: Relative vector to axial couplings affect relative production of positive lepton along proton direction (forward) to production opposite to proton direction (backward)

0.6

0.4

0.2

-0.2

-0.4

40

80

120

M (GeV/ c^2)

60

0

 A_{fb}

q(g)

 $\bar{q}(g)$

u + d

140 160 180 200

Procedurally: measure $A_{_{FB}} \rightarrow fit$ for $\sin^2 \theta^{lep} \rightarrow extract \ \sin^2 \theta_{_W} \rightarrow extract \ m_{_W}$

$$A_{\rm FB} = \frac{\sigma_{\rm F} - \sigma_{\rm B}}{\sigma_{\rm F} + \sigma_{\rm B}}$$

$$g_V^f = T_3^f - 2Q_f \sin^2 \theta_W \text{ and}$$
$$g_A^f = T_3^f,$$

Asymmetry depends on initial state partons: Important to have accurate PDFs

C. Hays, Oxford University

21 March 2016

Z forward-backward asymmetry

New CDF measurement maximizes statistical sensitivity by weighting each event according to the symmetrized angular distribution \rightarrow an effective unbinned likelihood

C. Hays, Oxford University

Z forward-backward asymmetry

Total uncertainty statistics-dominated Systematic uncertainty PDF-dominated

Final combined $ee+\mu\mu$:

 $\sin^2 \theta_{\rm eff}^{\rm lept} = 0.23221 \pm 0.00043 \pm 0.00018$

 $\sin^2 \theta_W = 0.22400 \pm 0.00041 \pm 0.00019$

 M_W (indirect) = 80.328 ± 0.021 ± 0.010 GeV/ c^2

Top quark mass

Top quark mass a key parameter in m_w corrections: 1 GeV change in m_t affects m_w by 6 MeV Leading uncertainty in SM prediction of m_w

CMS m_t would reduce m_W^{SM} by ~5 MeV, leading to ~2 σ discrepancy with direct measurement 21 March 2016 C. Hays, Oxford University

22

Overview

- Hadron collider physics
- Parton distributions and underlying event

• Electroweak parameter measurements

Electroweak boson self-coupling constraints

Electroweak boson self-couplings

 \bar{q}

No free parameters in gauge boson self-couplings

Constrain possible non-SM "anomalous" couplings Non-renormalizable terms, can violate unitarity

Historically suppress anomalous couplings via a form factor Implies some new high-scale strong dynamics

 $\lambda(\hat{s}) = \frac{\lambda}{(1 + \hat{s}/\Lambda^2)^2}$ Recently also study constraints with no form factor Valid for new high-scale weak dynamics In line with proposed Higgs coupling constraints, historical LEP constraints

Apply to effective field theory: Lagrangian with all possible 6-dimensional terms

$$\Delta \mathcal{L}_{tgc} = ie \left[\delta \kappa_{\gamma} A_{\mu\nu} W^{+}_{\mu} W^{-}_{\nu} + \tilde{\kappa}_{\gamma} \tilde{A}_{\mu\nu} W^{+}_{\mu} W^{-}_{\nu} \right] + igc_{\theta} \left[\delta g_{1,z} \left(W^{+}_{\mu\nu} W^{-}_{\mu} - W^{-}_{\mu\nu} W^{+}_{\mu} \right) Z_{\nu} + \delta \kappa_{z} Z_{\mu\nu} W^{+}_{\mu} W^{-}_{\nu} + \tilde{\kappa}_{z} \tilde{Z}_{\mu\nu} W^{+}_{\mu} W^{-}_{\nu} \right] + i \frac{e}{m_{W}^{2}} \left[\lambda_{\gamma} W^{+}_{\mu\nu} W^{-}_{\nu\rho} A_{\rho\mu} + \tilde{\lambda}_{\gamma} W^{+}_{\mu\nu} W^{-}_{\nu\rho} \tilde{A}_{\rho\mu} \right] + i \frac{gc_{\theta}}{m_{W}^{2}} \left[\lambda_{z} W^{+}_{\mu\nu} W^{-}_{\nu\rho} Z_{\rho\mu} + \tilde{\lambda}_{z} W^{+}_{\mu\nu} W^{-}_{\nu\rho} \tilde{Z}_{\rho\mu} \right] + \frac{c_{3G}}{v^{2}} g_{s}^{3} f^{abc} G^{a}_{\mu\nu} G^{b}_{\nu\rho} G^{c}_{\rho\mu} + \frac{\tilde{c}_{3G}}{v^{2}} g_{s}^{3} f^{abc} \tilde{G}^{a}_{\mu\nu} G^{b}_{\nu\rho} G^{c}_{\rho\mu}, \qquad \text{LHCHXSWG-INT-2015-001}$$
(3.6)

Gauge-boson self-coupling processes

s-channel multiboson production

t-channel vector boson fusion

Vector boson scattering

WW production

Previous cross sections measured to be $\sim 2\sigma$ higher than NLO SM prediction

Discrepancy reduced with NNLO+NNLL calculation Top quark contributions important

WW production

Vector-boson fusion

Single-boson production probes triple-gauge coupling through vector-boson fusion An important channel for measuring Higgs boson couplings

Vector boson fusion of a Z boson measured by ATLAS and CMS VBF W production offers higher statistics, more precise test of signal and backgrounds

First measurement of VBF W at the LHC performed by CMS

Summary

LHC has led to a step change in SM measurements

Theory:

A uniform ensemble of parton distributions at NNLO Event generators at NNLO, merging of parton emissions at NLO

Experiment:

Fiducial and differential cross section measurements Rare processes never before studied

- Run 1 results use "kappa" ~model-independent framework
 - Multiplicative factors for Higgs terms in the Lagrangian

For a given production process or decay channel:

$$\kappa_j^2 = \sigma_j / \sigma_j^{\text{SM}} \qquad \kappa_j^2 = \Gamma^j / \Gamma_{\text{SM}}^j$$

Connect to measurements via " μ " factors (notation: $i \rightarrow H \rightarrow f$)

$$\mu_i = \frac{\sigma_i}{(\sigma_i)_{\text{SM}}}$$
 and $\mu^f = \frac{\text{BR}^f}{(\text{BR}^f)_{\text{SM}}}$.

$$\mu_i^f = \frac{\sigma_i \cdot \mathbf{BR}^f}{(\sigma_i)_{\mathrm{SM}} \cdot (\mathbf{BR}^f)_{\mathrm{SM}}} = \mu_i \times \mu^j$$

ATLAS-CONF-2015-044, 21 March 2016 CMS-PAS-HIG-15-002

Production	Loops	Interference	Multip	licative factor
$\sigma(ggF)$	\checkmark	b-t	$\kappa_g^2 \sim$	$1.06 \cdot \kappa_t^2 + 0.01 \cdot \kappa_b^2 - 0.07 \cdot \kappa_t \kappa_b$
$\sigma(VBF)$	_	_	~	$0.74 \cdot \kappa_{\rm W}^2 + 0.26 \cdot \kappa_{\rm Z}^2$
$\sigma(WH)$	_	_	~	$\kappa_{\rm W}^2$
$\sigma(qq/qg \to ZH)$	_	_	~	$\kappa_{\rm Z}^2$
$\sigma(gg\to ZH)$	\checkmark	Z - t	~	$2.27 \cdot \kappa_Z^2 + 0.37 \cdot \kappa_t^2 - 1.64 \cdot \kappa_Z \kappa_t$
$\sigma(ttH)$	_	_	~	κ_t^2
$\sigma(gb \to WtH)$	_	W - t	~	$1.84 \cdot \kappa_t^2 + 1.57 \cdot \kappa_W^2 - 2.41 \cdot \kappa_t \kappa_W$
$\sigma(qb \to tHq)$	_	W - t	~	$3.4 \cdot \kappa_t^2 + 3.56 \cdot \kappa_W^2 - 5.96 \cdot \kappa_t \kappa_W$
$\sigma(bbH)$	_	-	~	$\kappa_{\rm b}^2$
Partial decay width				
Γ^{ZZ}	_	_	~	$\kappa_{\rm Z}^2$
Γ^{WW}	_	_	\sim	$\kappa_{\rm W}^2$
$\Gamma^{\gamma\gamma}$	\checkmark	W - t	$\kappa_{\gamma}^2 \sim$	$1.59 \cdot \kappa_{W}^{2} + 0.07 \cdot \kappa_{t}^{2} - 0.66 \cdot \kappa_{W} \kappa_{t}$
$\Gamma^{\tau\tau}$	_	_	•~	κ_{τ}^2
Γ^{bb}	_	_	\sim	$\kappa_{\rm h}^2$
$\Gamma^{\mu\mu}$	_	_	~	κ_{μ}^{2}
Total width for $BR_{BSM} = 0$				F
				$0.57 \cdot \kappa_{\rm b}^2 + 0.22 \cdot \kappa_{\rm W}^2 + 0.09 \cdot \kappa_{\rm e}^2 +$
$\Gamma_{\rm H}$	\checkmark	_	$\kappa_{\rm H}^2 \sim$	$+ 0.06 \cdot \kappa_{\tau}^2 + 0.03 \cdot \kappa_Z^2 + 0.03 \cdot \kappa_c^2 +$
				+ $0.0023 \cdot \kappa_{\gamma}^2$ + $0.0016 \cdot \kappa_{Z\gamma}^2$ +
				$+ 0.0001 \cdot \kappa_{s}^{2} + 0.00022 \cdot \kappa_{\mu}^{2}$

Combined ATLAS+CMS κ and μ constraints

- First results with effective Lagrangian from ATLAS $H \rightarrow \gamma \gamma$
 - Consider only terms relevant for ggF and VBF production

 $\mathcal{L} = \bar{c}_{\gamma} O_{\gamma} + \bar{c}_{g} O_{g} + \bar{c}_{HW} O_{HW} + \bar{c}_{HB} O_{HB}$ $+ \tilde{c}_{\gamma} \tilde{O}_{\gamma} + \tilde{c}_{g} \tilde{O}_{g} + \tilde{c}_{HW} \tilde{O}_{HW} + \tilde{c}_{HB} \tilde{O}_{HB},$

arxiv:1508.02507

- First results with effective Lagrangian from ATLAS $H \rightarrow \gamma \gamma$
 - Obtain constraints in 1- & 2-dimensional coupling planes

- Leading-order effective Lagrangian has limitations
 - Parameters have no sensitivity to e.g. pTH
- Ongoing work to extend to NLO and to add dimension-8 operators
 - already 59 operators at dimension-6
- Yellow report will also have prescription for connecting experimental constraints on EFT parameters to specific models
 - Also plan to investigate connections between exclusive cross sections to specific models

W and Z boson masses

- W and Z bosons contain three fields of the Higgs doublet
 - Loop mass corrections common to those of the Higgs boson
 - W boson mass is predicted given the precise knowledge of the Z boson mass, electroweak couplings, and top mass
 - Compare to direct measurement to probe corrections

• Sensitive to low-mass supersymmetry

 $\frac{\tilde{q}}{q}$

W

W

Tevatron experiments analyzing final data set (~9 fb⁻¹)

- Factors of 2-4 increase in events
- CDF expects final uncertainty of ~10 MeV

LHC experiments laying groundwork for measurement

- Many details of W & Z production need to be understood
 - Parton distribution function uncertainties dominate
 - Constrain with W+/W- asymmetry, Z rapidity

• LHC experiments laying groundwork for measurement

- Many details of W & Z production need to be understood
 - Parton distribution function uncertainties dominate
 - Constrain with W/Z ratio, W+charm

• LHC experiments laying groundwork for measurement

- Many details of W & Z production need to be understood
 - Parton distribution function uncertainties dominate
 - Constrain with LHCb?

	3 fb^{-1}		7 fb^{-1}	
	W^+	W^{-}	W^+	W^-
Signal yields, $\times 10^6$	1.2	0.7	5.4	3.4
Z/γ^* background, (B/S)	0.15	0.15	0.15	0.15
QCD background, (B/S)	0.15	0.15	0.15	0.15
δm_W (MeV)				
Statistical	19	29	9	12
Momentum scale	7	7	4	4
Quadrature sum	20	30	10	13

Could lead to ~25% reduction in combined PDF uncertainty

arxiv:1508.06954

- LHC experiments laying groundwork for measurement
 - Many details of W & Z production need to be understood
 - Transverse momentum distributions also important

Z boson asymmetry

• LHC measurements have significant PDF uncertainties

– PDF improvements needed for both direct and indirect m_w

source		correction	uncertainty
PDF	CMS	-	± 0.0013
FSR	CMS	-	± 0.0011
LO model (EWK)		-	± 0.0002
LO model (QCD)		+0.0012	± 0.0012
resolution and alignment		+0.0007	± 0.0013
efficiency and acceptance		-	± 0.0003
background		-	± 0.0001
total		+0.0019	± 0.0025

PRD 84, 112002

41

	$\operatorname{ATLAS} \qquad \sin^2 \theta_{\mathrm{eff}}^{\mathrm{lept}}$	
CC electron	$0.2302 \pm 0.0009(\text{stat.}) \pm 0.0008(\text{syst.}) \pm 0.0010(\text{PDF}) = 0.2302 \pm 0.0016$	
CF electron	0.2312 ± 0.0007 (stat.) ± 0.0008 (syst.) ± 0.0010 (PDF) $= 0.2312 \pm 0.0014$	IHEP 09 (2015) 049
Muon	$0.2307 \pm 0.0009(\text{stat.}) \pm 0.0008(\text{syst.}) \pm 0.0009(\text{PDF}) = 0.2307 \pm 0.0015$	J
El. combined	$0.2308 \pm 0.0006(\text{stat.}) \pm 0.0007(\text{syst.}) \pm 0.0010(\text{PDF}) = 0.2308 \pm 0.0013$	RECEIPTION OF THE
Combined	$0.2308 \pm 0.0005(\text{stat.}) \pm 0.0006(\text{syst.}) \pm 0.0009(\text{PDF}) = 0.2308 \pm 0.0012$	