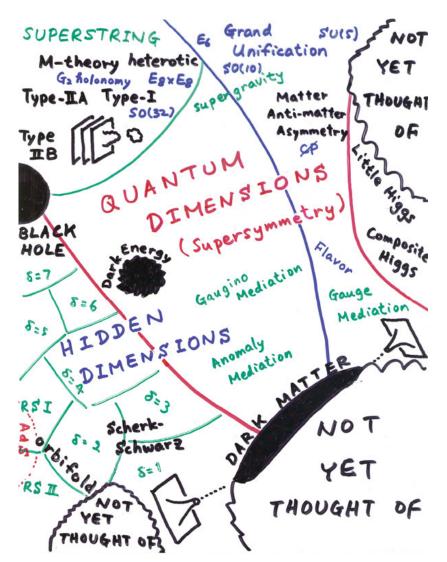
University of Sussex

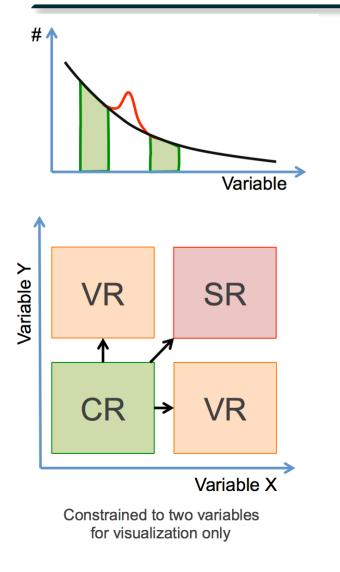
Search for supersymmetry and exotica with ATLAS and CMS


Iacopo Vivarelli University of Sussex

Joint annual HEPP and APP Conference Institute of Physics 21-23 March 2016, University of Sussex, Brighton

LHC: searches for BSM physics

- Theoretical considerations (interaction unification, hierarchy,...) and cosmological measurements (dark matter, baryogenesis, ...) call for physics phenomena not included in SM.
- The LHC is a tool built to tear down the wall of the Standard Model:
 - Full exploration of TeV scale and EW symmetry breaking
- Direct searches are a **vast field of research** in both collaborations:
 - About half of the published CMS and ATLAS papers are searches



Taken from <u>www.linearcollider.org</u>, courtesy of Hitoshi Murayama

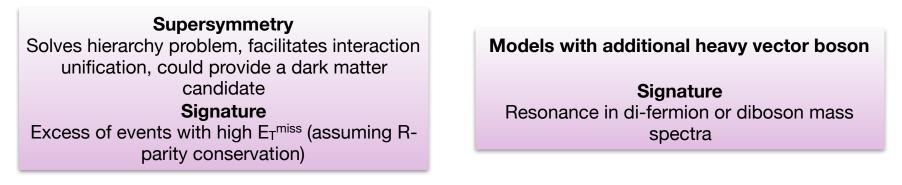
Perform a search (in a nutshell)

University of Sussex

Courtesy of Frederich Rühr

Searching for a **localised excess** on a smooth distribution (e.g., mass resonance)

 Background determined usually from data (fit background with a smooth function or in sidebands)


Or for an **excess of events** for specific selections

 Background determined either from data or in "control regions" (Standard Model-dominated phase space regions)

MC is key for extrapolating between regions

- Different searches inspired to different physics models
 - Often used for optimisation of selection and result interpretation
- Widely used models include (together with many others):

Extra-dimensions (UED, RS, ADD) Solves hierarchy problem, facilitates interaction unification Signature

Resonant or non-resonant graviton production giving rise to peaks or excesses in di-fermion or diboson mass distributions; direct graviton production; black holes formation Generic effective theories HVT, scalar-tensor DM Signature mono-X (excess of events with E_T^{miss} recoiling against jets), resonances

Run 1 legacy...

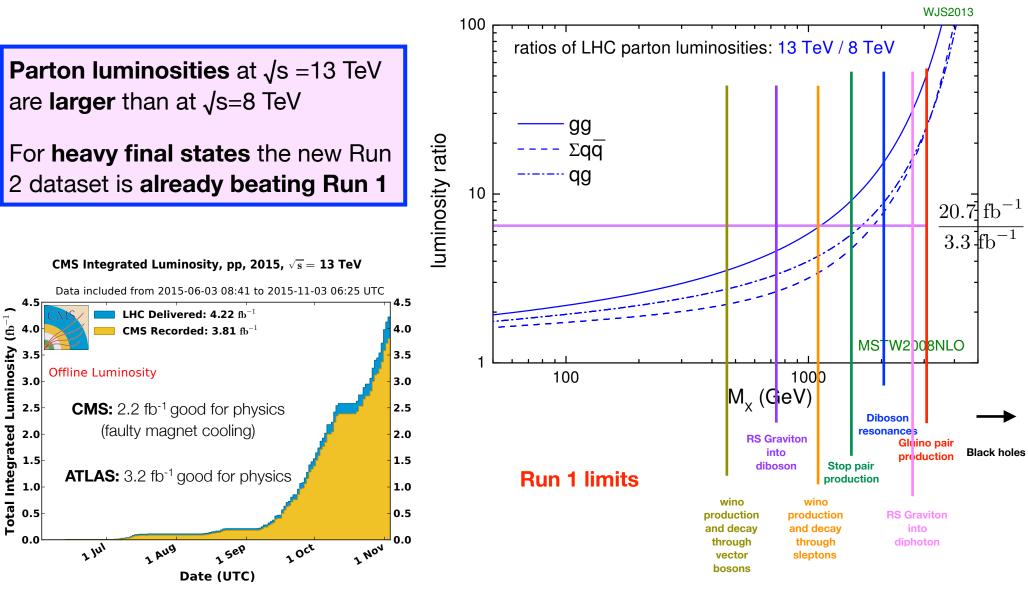
http://cms.web.cern.ch/org/cms-papers-and-results

 Depending on interaction involved, run 1 sensitivity already knocked on the multi-TeV scale door

ATLAS Exotics Searches* - 95% CL Exclusion ATLAS Preliminary Summary of CMS SUSY Results* in SMS framework **ICHEP 2014** $\int \mathcal{L} dt = (4.7 - 20.3) \text{ fb}^{-1}$ $\sqrt{s} = 7, 8 \text{ TeV}$ ℓ, γ Jets $E_{T}^{miss} \int \mathcal{L} dt [fb^{-1}]$ Model Limit Reference ADD $G_{KK} + g/q$ ADD non-resonant ℓ ADD QBH $\rightarrow \ell q$ ≥1j Yes 20.3 1502 01518 $\begin{array}{c} \widetilde{g} \rightarrow qq \, \widetilde{\chi}_{0}^{0} \\ \widetilde{g} \rightarrow bb \, \widetilde{\chi}_{0}^{0} \\ \widetilde{g} \rightarrow tt \, \widetilde{\chi}_{0}^{0} \\ \widetilde{g} \rightarrow t(\widetilde{\tau} \rightarrow t\widetilde{\chi}_{0}^{0}) \end{array}$ US 13-019 L-19 5 2e,μ 1 e,μ n = 2n = 3 HLZ n = 61407.2410 20.3 20.3 20.3 1 j 2 j SUS-13-007 SUS-13-013 L=19.4 19.5 /fb ADD QBH ADD BH high N_{trk} n = 61407.1376 SUS-13-008 SUS-13-013 L=19.5 /fb 2 µ (SS) 20.3 20.3 20.3 20.3 n = 6, Mo = 3 TeV, non-rot BH 1308.4075 $$\begin{split} \widetilde{g} &\to qq(\widetilde{\chi}^{\pm} \to W\widetilde{\chi}^{0}) \\ \widetilde{g} &\to b(\widetilde{b} \to t(\widetilde{\chi}^{\pm} \to W\widetilde{\chi}^{0})) \end{split}$$ 013 L=19.5 /fb ADD BH high $\sum p_T$ ADD BH high multij RS1 $G_{KK} \rightarrow \ell \ell$ ≥2j ≥2j n = 6, $M_D = 3$ TeV, non-rot BH n = 6, $M_D = 3$ TeV, non-rot BH $k/\overline{M}_{\rm Pl} = 0.1$ ≥ 1 e, µ 1405.4254 3-008 SUS-13-013 L=19.5 /ft 1503.08988 2 e,μ 2 γ SUS-13-019 L=19.5 /fb $\widetilde{q} \to q \ \widetilde{\chi}$ RS1 $G_{KK} \rightarrow \gamma\gamma$ 20.3 $k/\overline{M}_{\rm Pl} = 0.1$ 1504.0551 Bulk RS $G_{KK} \rightarrow ZZ \rightarrow qq\ell\ell$ Bulk RS $G_{KK} \rightarrow WW \rightarrow qq\ell\nu$ $2e_{,\mu}$ 2j/1J – $1e_{,\mu}$ 2j/1J Yes – 4b – $1e_{,\mu} \ge 1b_{,} \ge 1J/2j$ Yes $k/M_{Pl} = 0.1$ $k/\overline{M}_{Pl} = 1.0$ $k/\overline{M}_{Pl} = 1.0$ $k/\overline{M}_{Pl} = 1.0$ BR = 0.925 2 e,μ 1 e,μ 20.3 1409.6190 $\widetilde{t} \rightarrow b (\widetilde{\chi}^{*} \xrightarrow{\widetilde{t}} W \widetilde{\chi}^{0})$ 20.3 19.5 20.3 1503.04677 Bulk RS $G_{KK} \rightarrow HH \rightarrow b\bar{b}b\bar{b}$ Bulk RS $g_{KK} \rightarrow t\bar{t}$ 1506.00285 = 0.25 x = 0.50 SUS-13-011 L=19.5 /fb $\begin{array}{c} \operatorname{Ib} \widetilde{\chi}^{0}(\widetilde{\chi}^{0} \rightarrow \operatorname{H} \operatorname{G}) \\ \rightarrow (\widetilde{\mathfrak{l}}_{1} \rightarrow \operatorname{t} \widetilde{\chi}^{0}_{1}) \operatorname{Z} \\ \rightarrow (\widetilde{\mathfrak{l}}_{1} \rightarrow \operatorname{t} \widetilde{\chi}^{0}_{1}) \operatorname{H} \end{array}$ tb x (x US-13-014 L=19.5 /f $2e, \mu$ (SS) $\ge 1b, \ge 1i$ Yes 20.3 4 SUS-13-004 L=19.5 /fb 2UED / RPP 1504.04605 SUS-13-024 SUS-13-004 L=19.5 /ft $\begin{array}{l} \operatorname{SSM} Z' \to \ell\ell \\ \operatorname{SSM} Z' \to \tau\tau \\ \operatorname{SSM} W' \to \ell\nu \end{array}$ 2 e, μ 2 τ 1 e, μ 20.3 19.5 20.3 20.3 1405.4123 1502.07177 SUS-13-018 L=19.4 /fb SUS-13-008 SUS-13-013 L=19.5 /fb $\tilde{b} \rightarrow b \tilde{\gamma}$ Yes Yes -Yes Yes - $\tilde{h} \rightarrow tW\tilde{r}$ EGM $W' \rightarrow WZ \rightarrow \ell \nu \ell' \ell''$ EGM $W' \rightarrow WZ \rightarrow gg\ell \ell$ 3 e, µ 1406.4456 2j/1J 20.3 20.3 20.3 20.3 20.3 20.3 SUS-13-008 L=19.5 /fl 2 e, µ 1409.6190 $\widetilde{b} \to b Z \, \widetilde{\chi}^0$ $\begin{array}{l} \mathsf{EGM} \ W' \to WZ \to qqqt\\ \mathsf{EGM} \ W' \to WZ \to qqqq\\ \mathsf{HVT} \ W' \to WH \to \ell\nu bb\\ \mathsf{LRSM} \ W'_R \to t\bar{b}\\ \mathsf{LRSM} \ W'_R \to t\bar{b} \end{array}$ 2J 2b 2b,0-1j ≥1b,1J 1506.00962 1503.08089 1410.4103 1.3-1.5 Te -1 e,μ 1 e,μ 0 e,μ ¥=895 $g_V = 1$ SUS-13-006 L=19.5 /fb $\tilde{z}^0 \tilde{z}^{\pm} \rightarrow \mathbb{I} \vee \tilde{z}^0 \tilde{z}$ +ľľvvž°ž →ZZްž SUS-13-006 L=19.5 /ft **CMS** Preliminary 1408.0886 →wzź°ź 1504.00357 1407.2410 1504.04605 SUS-13-006 L=19.5 /fb Cl qqqq Cl qq{{ 2 j 17.3 20.3 20.3 TeV $\eta_{LL} = -1$ $\stackrel{0}{\rightarrow}$ H Z $\overline{\chi}^{0} \overline{\chi}^{0}$ $\stackrel{f}{\rightarrow}$ H W $\overline{\chi}^{0} \overline{\chi}^{0}$ $\stackrel{f}{\rightarrow}$ H $\overline{\chi} \overline{\chi}^{0} \overline{\chi}^{0}$ 5 2 e,μ - -2 e,μ (SS) ≥ 1 b, ≥ 1 j Yes For decays with intermediate mass $|C_{LL}| = 1$ CI uutt $m_{intermediate} = x \cdot m_{mother} + (1 - x) \cdot m_{isc}$ SUS-13-006 L=19.5 /fl x = 0.50 EFT D5 operator (Dirac) EFT D9 operator (Dirac) Yes Yes 20.3 20.3 at 90% CL for $m(\chi) < 100 \text{ GeV}$ at 90% CL for $m(\chi) < 100 \text{ GeV}$ 1502.01518 $\overline{\chi}_{0}^{0}\overline{\chi}^{\pm} \rightarrow \tau \tau \tau \nu \overline{\chi}_{0}^{0}\overline{\chi}^{0}$ SUS-13-006 L=19.5 /fl 1309.4017 $\tilde{I} \rightarrow I \tilde{\chi}^0$ SUS-13-006 L=19.5 /fb Scalar LQ 1st ger 2 e 2 µ ≥2j ≥2j 20.3 $\beta = 1$ Preliminary Scalar LQ 2nd gen Scalar LQ 3rd gen $\beta = 1$ 20.3 20.3 Preliminary $\widetilde{g} \to q l \nu ~\lambda_{_{122}}$ 1 e. u ≥1 b, ≥3 j Yes $\beta = 0$ Preliminary $\tilde{g} \rightarrow qhr \lambda$ $\tilde{g} \rightarrow qhr \lambda$ $\tilde{g} \rightarrow qhr \lambda$ $\tilde{g} \rightarrow qbt \mu \lambda'$ SUS-12-027 L=9.2 /ft VLQ $TT \rightarrow Ht + X$ 20.3 T in (T,B) doublet 1505.04306 20.3 20.3 20.3 20.3 Y in (B,Y) double VLQ $YY \rightarrow Wb + X$ 1505.04306 VLQ $BB \rightarrow Hb + X$ isospin singlet B in (B,Y) doublet 1505.04306 $2/\ge 3 e, \mu \ge 2/\ge 1 b - 1 e, \mu \ge 1 b, \ge 5 j$ Yes 27 L=9.2 $VLQ BB \rightarrow Zb + X$ 1409 5500 $\begin{array}{c} g \rightarrow q d \mu \mu \ \lambda \ _{220} \\ \widetilde{g} \rightarrow q d \rho \ \lambda^{\prime \prime} \ _{115023} \\ \widetilde{g} \rightarrow q q q \ \lambda^{\prime \prime} \ _{115023} \\ \widetilde{g} \rightarrow d q q \ \lambda^{\prime \prime} \ _{112} \\ \widetilde{g} \rightarrow d s \ \lambda^{\prime \prime} \ _{200} \\ \widetilde{g} \rightarrow q q q q \ \lambda^{\prime \prime} \ _{112} \\ \widetilde{q} \rightarrow q d \nu \ \lambda^{\prime \prime} \ _{112} \\ \widetilde{q} \rightarrow q d \nu \ \lambda^{\prime \prime} \ _{122} \\ \widetilde{q} \rightarrow q d \nu \ \lambda^{\prime \prime} \ _{122} \end{array}$ $T_{5/3} \rightarrow Wt$ 1503.05425 Excited quark $q^* \rightarrow q_1$ 20.3 20.3 1309.3230 1γ 1 j 2 j only u^* and d^* , $\Lambda = m(q^*)$ SUS-13-013 L=19.5 /f Excited quark $q^* \rightarrow qg$ Excited quark $q^* \rightarrow qg$ Excited quark $b^* \rightarrow Wt$ Excited lepton $\ell^* \rightarrow \ell\gamma$ Excited lepton $\nu^* \rightarrow \ell W, \nu z$ only u^* and d^* , $\Lambda = m(q^*)$ left-handed coupling 1407.1376 1 or 2 e, µ 1 b, 2 j or 1 j Yes 4.7 13.0 20.3 870 GeV 1301.1583 1308.1364 2 e, μ, 1 γ $\Lambda = 2.2 \text{ TeV}$ $\Lambda = 1.6 \text{ TeV}$ 1411.2921 3 e, µ, τ $\tilde{q} \rightarrow qhr \lambda_{233}^{123}$ $\tilde{q} \rightarrow qbt\mu \lambda'_{231}$ 1 e, μ, 1 γ 2 e, μ 2 e, μ (SS) 3 e, μ, τ LSTC $a_T \rightarrow W_Y$ Yes -20.3 1407 8150 SUS-27 L=9.2 /fl LRSM Majorana v Higgs triplet $H^{\pm\pm} \rightarrow \ell\ell$ Higgs triplet $H^{\pm\pm} \rightarrow \ell\tau$ 2 j 20.3 20.3 20.3 20.3 20.3 20.3 20.3 7.0 $m(W_R) = 2.4$ TeV, no m DY production, BR($H_L^{\pm\pm}$ -DY production, BR($H_L^{\pm\pm}$ -1506.06020 1412.0237 1411.2921 $\begin{array}{c} \begin{array}{c} 231\\ \hline q \rightarrow qbt\mu \ \lambda \end{array} \\ \begin{array}{c} 231\\ \mu \rightarrow qbq\mu \ \lambda \end{array} \\ \begin{array}{c} 232\\ \mu \rightarrow \mu qqq \ \lambda \end{array} \\ \begin{array}{c} 112\\ \mu \rightarrow \mu \tau v \ t \ \lambda \end{array} \\ \begin{array}{c} 112\\ \mu \rightarrow \mu \tau v \ t \ \lambda \end{array} \\ \begin{array}{c} 123\\ \mu \rightarrow \mu \tau v \ t \ \lambda \end{array} \\ \begin{array}{c} 233\\ \mu \rightarrow \mu \tau v \ t \ \lambda \end{array} \\ \begin{array}{c} 233\\ \mu \rightarrow \mu \tau v \ t \ \lambda \end{array} \\ \begin{array}{c} 233\\ \mu \rightarrow \mu \tau v \ t \ \lambda \end{array}$ SUS-7 L=9.2 /f Monotop (non-res prod) 1 e, µ 1 b Yes $a_{non-res} = 0.2$ DY production, |q| = 5e1410.5404 271-92 Multi-charged particles 1504.04188 DY production, $|g| = 1g_D$, √s = 8 TeV $\sqrt{s} = 7 \text{ TeV}$ 600 1800 200 400 800 1200 1400 1600 0 1000 10-¹⁰ Mass scale [TeV] *Observed limits, theory uncertainties not included Mass scales [GeV] *Only a selection of the available mass limits on new states or phenomena is shown

Only a selection of available mass limits Probe *up to* the quoted mass limit

https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/CombinedSummaryPlots/EXOTICS/ ATLAS Exotics Summary/ATLAS Exotics Summary.png


Is Run 2 better than Run 1?

Is Run 2 better than Run 1?

How multipurpose is a multipurpose experiment

University of Sussex

CMS exotica

https://twiki.cern.ch/twiki/bin/view/CMSPublic/PhysicsResultsEXO https://twiki.cern.ch/twiki/bin/view/CMSPublic/PhysicsResultsB2G

Journal Publications - 2015 Run

Analysis ArXiv Entry Luminosity Publication Status Approved Plots Search for narrow resonances decaving to dilets NEW arXiv:1512.01224rg 2.4 fb⁻¹ 10.1103/PhysRevLett.116.071801rg EX015001rg

Preliminary Results - 2015 Run

Analysis	Approved Plots	CDS Entry	Luminosity
Search for resonances decaying into pairs of boosted W and Z bosons NEW	EXO15002 @	PAS EXO-15-002	2.6 fb ⁻¹
Search for dark matter in events with jets and missing transverse energy NEW	EXO15003 P	PAS EXO-15-003 @	2.1 fb ⁻¹
Search for resonances in diphoton events NEW	EXO15004 🗗	PAS EXO-15-004 P	2.6 fb ⁻¹
Search for Z' in dilepton events NEW	EXO15005	PAS EXO-15-005	2.6-2.8 fb ⁻¹
Search for W' in lepton+MET events NEW	EXO15006 @	PAS EXO-15-006 P	2.2 fb ⁻¹
Search for black holes NEW	EXO15007 P	PAS EXO-15-007 P	2.2 fb ⁻¹
Search for quark contact interactions and extra spatial dimensions with dijet angular distributions NEW	EXO15009 @	PAS EXO-15-009	2.6 fb ⁻¹
Search for heavy stable charged particles NEW	EXO15010	PAS EXO-15-010	2.4 fb ⁻¹

Analysis	Approved Plots	CDS Entry	Luminosity	Comment	S
NEW Search for W'->tb in the semileptonic final state at sqrt(s)=13 TeV	B2G-15-004 🗗	CDS link ₪	2.1 fb-1	13 TeV	5
NEW X53 in SS dilepton and lepton+jets final state%	B2G-15-006	CDS link @	2.1 fb-1	13 TeV	s

CMS SUSY

https://twiki.cern.ch/twiki/bin/view/CMSPublic/PhysicsResultsSUS

CMS-SUS-15-002	Search for supersymmetry in the multijet and missing transverse momentum channel in pp collisions at 13 TeV	Submitted to PLB
CMS-PAS-SUS-15-003	Search for new physics in the all-hadronic final state with the $M_{ m T2}$ variable	
	Search for new physics in final states with jets and missing transverse momentum in $\sqrt{s} =$ 13 TeV pp collisions with	
CMS-PAS-SUS-15-005	the $a_{\rm T}$ variable	
CMS-PAS-SUS-15-004	Inclusive search for supersymmetry using the razor variables at $\sqrt{s}=$ 13 TeV	
CMS-PAS-SUS-15-007	Search for supersymmetry in pp collisions at $\sqrt{s}=$ 13 TeV in the single-lepton final state using the sum of masses of large radius jets	
CMS-PAS-SUS-15-008	Search for SUSY in same-sign dilepton events at $\sqrt{s}=$ 13 TeV	
CMS-PAS-SUS-15-011	Search for new physics in final states with two opposite-sign same-flavor leptons, jets and $E_{\rm T}^{\rm miss}$ in pp collisions at \sqrt{s} = 13 TeV	

Screenshots taken on Wednesday, March 17

IOP Conference - Brighton - 21-23 March 2016

ATLAS exotica

https://twiki.cern.ch/twiki/bin/view/AtlasPublic/ExoticsPublicResults

Títle	Journal	Papers and Plots	Int. Iuminosity	Date
Search for new phenomena with photon+jet events in proton-proton collisions at v/s = 13 TeV with the ATLAS detector	Published in JHEP	Plots and more Info ;; arxiv:1512.05910 ;; JHEP 03 (2016) 041 ;;	3.2/fb	Dec 2015
Search for strong gravity in multijet final states produced in pp collisions at \sqrt{s} = 13 TeV using the ATLAS detector at the LHC	Published in JHEP	Plots and more Info ;; arxiv:1512.02586 ;; JHEP 03 (2016) 026 ;;	3.6/fb	Dec 2015
Search for new phenomena in dijet mass and angular distributions from pp collisions at \sqrt{s} = 13 TeV with the ATLAS detector	Published in PLB	Plots and more Info.;; anxiv:1512.01530;; PLB 754 (2016) 302- 322;	3.6/fb	Dec 2015

Conference Notes with 2015 data

Papers with 2015 data

Title	Conference Note and Plots	Int. Iuminosity	Date
Search for heavy resonances decaying to a Z boson and a photon in pp collisions at vs =13 TeV with the ATLAS detector	ATLAS-CONF-2016-010	3.2/fb	Mar 2016
Search for TeV-scale gravity signatures in high-mass final states with leptons and jets with the ATLAS detector at vis = 13 TeV 🐡	ATLAS-CONF-2016-006	3.2/fb	Mar 2016
Search for new resonances in events with one lepton and missing transverse momentum in pp collisions at vs = 13 TeV with the ATLAS detector	ATLAS-CONF-2015-063	3.2/fb	Dec 2015
Search for diboson resonances in the vvqq final state in pp collisions at √s = 13 TeV with the ATLAS detector	ATLAS-CONF-2015-068,	3.2/fb	Dec 2015
Search for new phenomena in the dilepton final state using proton-proton collisions at v/s = 13 TeV with the ATLAS detector	ATLAS-CONF-2015-070	3.2/fb	Dec 2015
Search for diboson resonances in the liqq final state in pp collisions at vs = 13 TeV with the ATLAS detector	ATLAS-CONF-2015-071	3.2/fb	Dec 2015
Search for beyond the Standard Model phenomena in eµ final states in pp collisions at √s = 13 TeV with the ATLAS detector	ATLAS-CONF-2015-072	3.2/fb	Dec 2015
Search for resonances with boson-tagged jets in 3.2/fb of pp collisions at v/s = 13 TeV collected with the ATLAS detector	ATLAS-CONF-2015-073	3.2/fb	Dec 2015
Search for new resonances decaying to a W or Z boson and a Higgs boson in the libbbar, hybra, and wbbbar channels in pp collisions at vis = 13 TeV with the ATLAS detector	ATLAS-CONF-2015-074,	3.2/fb	Dec 2015
Search for WW/WZ resonance production in the lvqq final state at √s = 13 TeV with the ATLAS detector at the LHC	ATLAS-CONF-2015-075	3.2/fb	Dec 2015
Search for dark matter produced in association with a hadronically decaying vector boson in pp collisions at √s = 13 TeV with the ATLAS detector at the LHC	ATLAS-CONF-2015-080 g	3.2/fb	Dec 2015
Search for resonances decaying to photon pairs in 3.2/fb of pp collisions at v/s = 13 TeV with the ATLAS detector	ATLAS-CONF-2015-081	3.2/fb	Dec 2015
Search for TeV-scale gravity signatures in high-mass final states with leptons and jets with the ATLAS detector at vis = 13 TeV	ATLAS-CONF-2015-046g	80/pb	Sept 2015
Search for New Phenomena in Dijet Mass and Angular Distributions with the ATLAS Detector at √s = 13 TeV	ATLAS-CONF-2015-042	80/pb	Aug 2015
Search for evidence for strong gravity in jet final states produced in pp collisions at 🗤s = 13 TeV using the ATLAS detector at the LHC	ATLAS-CONF-2015-043	80/pb	Aug 2015

ATLAS SUSY

https://twiki.cern.ch/twiki/bin/view/AtlasPublic/SupersymmetryPublicResults

papers

Short Title of Paper	Date	√s (TeV)	L (fb ⁻¹)	Document	Plots+Aux. Material	Journal
2 same sign or 3 leptons NEW	02/2016	13	3.2	1602.09058 ₆₇	Link	Submitted to EPJ C
0L 7-10 jets NEW	02/2016	13	3.2	1602.06194 ₆	Link	Submitted to Phys. Lett. B

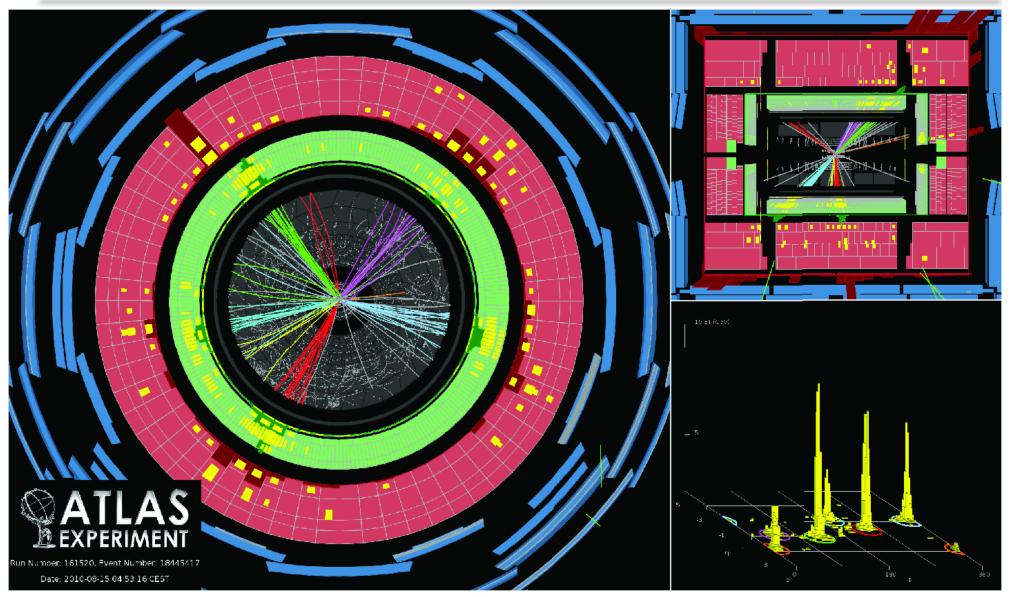
conference notes

Short Title of preliminary conference note	Date	√s (<mark>⊺∘</mark>)	L (fb ⁻¹)	Document	Plots
1L stop NEW	3/2016	13	3.2	ATLAS-CONF-2016-007 P	Link
2L stop NEW	3/2016	13	3.2	ATLAS-CONF-2016-009	Link
0L 2-6 jets	12/2015	13	3.2	ATLAS-CONF-2015-062	Link
1L + jets	12/2015	13	3.2	ATLAS-CONF-2015-076	Link
2L Z+MET	12/2015	13	3.2	ATLAS-CONF-2015-082	Link
multi b-jets	12/2015	13	3.2	ATLAS-CONF-2015-067	Link
2b + MET	12/2015	13	3.2	ATLAS-CONF-2015-066	Link

How multipurpose is a multipurpose experiment

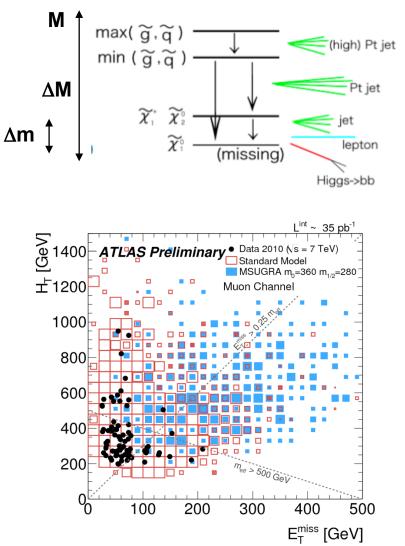
- University of Sussex
- More than 50 Run 2 public results (not counting searches involving Higgs bosons) produced by ATLAS and CMS

A (admittedly biased) selection of the result


Supersymmetry Dark Matter/strong gravity Di-jet/di-lepton resonance searches Diboson resonance searches Diphoton resonance searches

Not covered

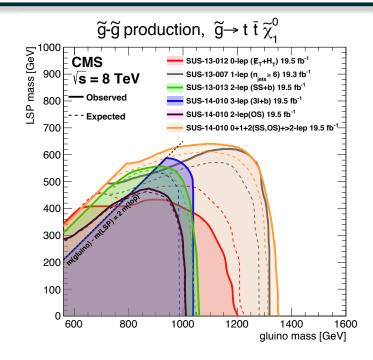
Other resonances (Di-top quark, photon/Z, etc.) Vector like quarks Leptoquarks Non-conventional signatures (long lived particles, etc.)


Supersymmetry

R-parity conserving (RPC) SUSY

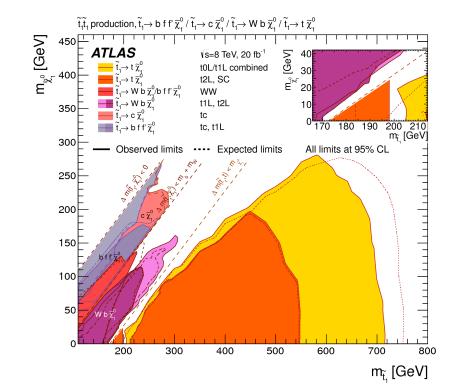
- Heavy sparticles produced in the primary collision
- They decay into lighter objects, emitting (high) p_T jets and possibly other objects (leptons, photons) and E_T^{miss} (LSP)
- A "typical" RPC SUSY event will have large MET and large H_T

$$H_T = \sum_{jets} p_T^{jets} (+ \sum_l p_T^l + \ldots)$$



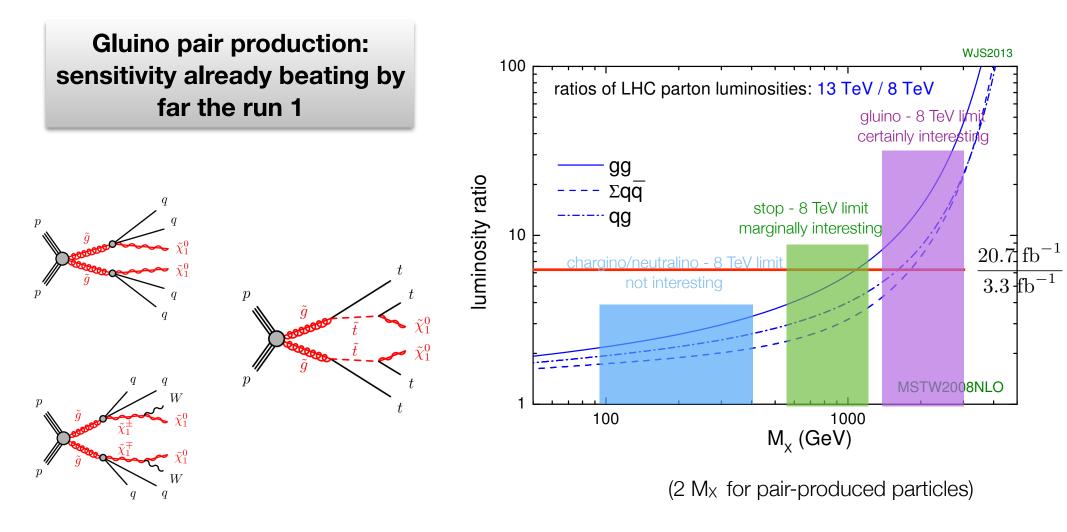
The run 1 legacy

University of Sussex

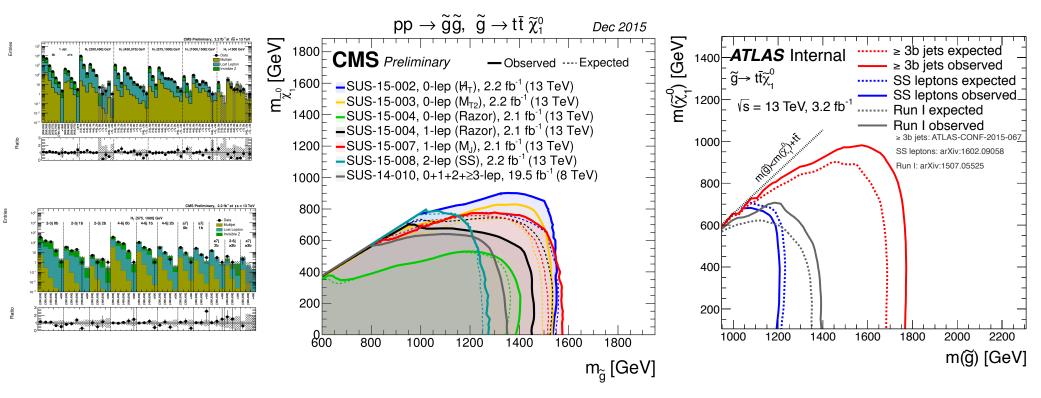


Gluinos excluded almost independently of any hypothesis below ~ 800 GeV

stops excluded (under certain hypotheses) up to ~ 700 GeV


electroweakinos less constrained (but excluded up to 200-300 GeV under common assumptions)

- Run 1 told us:
 - that simple "vanilla" SUSY does not exist
 - favourite pre-LHC models (e.g. mSUGRA/CMSSM) disfavoured



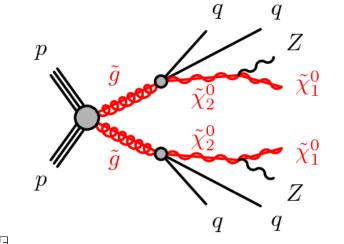
2015: the year of strong production

Example: gluino decay in top quarks

- Up to 4 b-jets, 12 jets, 4 leptons, SS leptons, boosted top quarks
- Several different approaches to this final state

- Stops (and sbottoms) expected light because of naturalness arguments.
- Run 2 sensitivity already larger than Run 1 Hp: BR 100% $\tilde{\chi}_1^0$ $pp \rightarrow \widetilde{t}\widetilde{t}, \ \widetilde{t} \rightarrow t \ \widetilde{\chi}_1^0$ Moriond 2016 $m_{\widetilde{\chi}_i^0}$ [GeV] 500 **CMS** Preliminary 450^上 Observed ---- Expected t_1t_1 production, $t_1 \rightarrow t + \widetilde{\chi}$ 450 $m_{\widetilde{\chi}_i}$ [GeV] SUS-16-007 HPTT, 0-lep stop, 2.3 fb⁻¹ (13 TeV)
 SUS-16-007 HETT, 0-lep stop, 2.3 fb⁻¹ (13 TeV)
 SUS-16-002, 1-lep stop, 2.3 fb⁻¹ (13 TeV) **ATLAS** Preliminary Observed limit $(\pm 1\sigma_{th})$ 400 400 -√s = 13 TeV, 3.2 fb Expected limit $(\pm 1\sigma_{exp})$ Limit at 95% CL ATLAS stop1L 8 TeV, 20.3 fb 350 **350** lobs. 300 300 250 250 200 200 150 150 100 100 50 50 600 650 700 750 800 850 500 550 200 300 600 700 800 900 $m_{\tilde{t}}$ [GeV] m_ř [GeV]

Something to keep an eye on

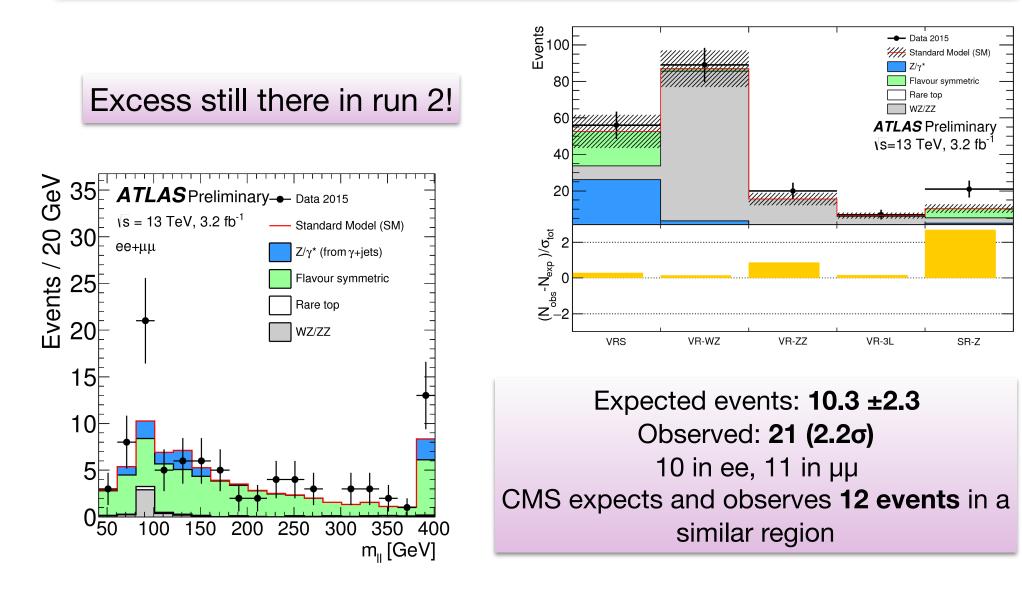


- **Basic idea:** Z boson + E_T^{miss} is a final state with • very limited SM background (essentially WZ and ZZ production)
- Selection: 2 jets, $E_T^{miss} > 225 \text{ GeV}$, $H_T > 600 \text{ GeV}$

arXiv:1503.03290

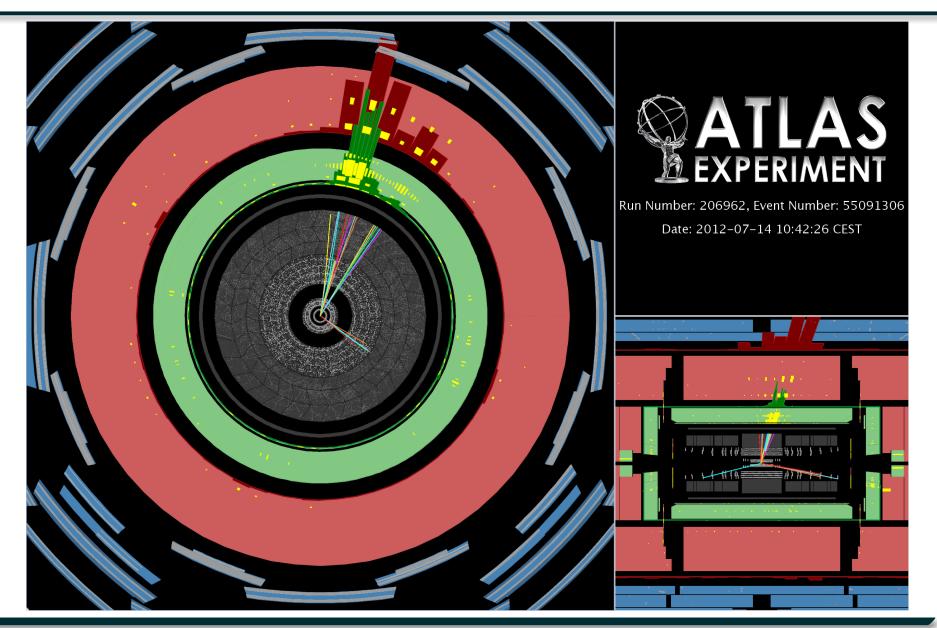
Events / 2.5

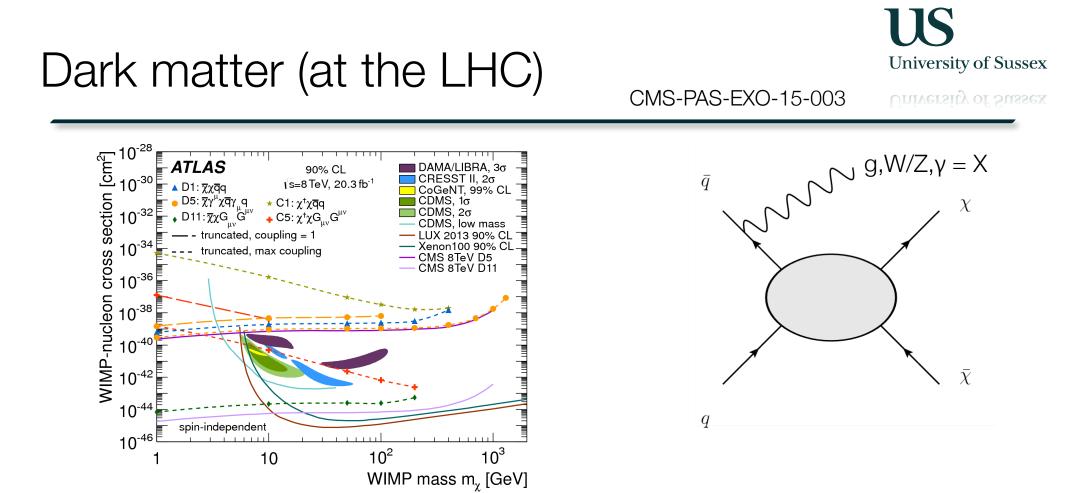
10


∧a5 14 5 GeV 15 Data Data ATLAS ATLAS Hill Standard Model ## Standard Model Events / 2. s = 8 TeV, 20.3 fb⁻¹ Flavour Symmetric Flavour Symmetric s = 8 TeV, 20.3 fb⁻¹ Other Backgrounds Other Backgrounds **10**–SR-Ζ μμ SR-Z ee •••••• m(g),µ=(700,200)GeV_ •••••• m(g), µ=(700,200)GeV m(g),µ=(900,600)GeV m(q), µ=(900, 600) GeV 3σ excess 8⊢ 1.7σ excess 82 84 86 88 90 92 94 96 98 100 82 84 86 88 90 92 94 96 98 100 m_{II} [GeV] m_" [GeV]

Excess in run 1

non-resonant background dominated by flavour symmetric processes (mainly ttbar)


Something to keep an eye on



Dark Matter

- LHC can complement direct searches limits
- **Signal:** production of DM particles recoiling against X (X=g,W/Z,γ)
 - Effective theory approach (EFT) mostly used in Run 1 (mass of the mediator large)
 - Similar signatures for direct graviton production in, e.g., ADD models

IOP Conference - Brighton - 21-23 March 2016

400

200

 10^{2}

- Relevant also for, e.g., compressed SUSY scenarios CMS Preliminary 2.1 fb⁻¹ (13 TeV) 2.1 fb⁻¹ (13 TeV) - Data m_{DM} (GeV) ····· Signal (V, 1TeV) 10⁴ 1400 Median Expected 90% CL **Ζ(**νν) **CMS** Preliminary Observed 90% CL W(lv) 10³ $g_{DM} = g_{SM} = 1$ +/- Scale Uncert. Z(II) 1200 8TeV - Median Expected 90% CL Top 10² Events / GeV 8TeV - Observed 90% CL Dibosons Vector LUX QCD 10 Planck+WMAP Relic 1000 Prefit Ratio Postfit Ratio 800 10 600 10^{-2}
- A huge amount of work went into the definition of benchmark simplified models (see arXiv: 1506.03116, arXiv:1507.00966, arXiv:1407.8257)

Dark matter signatures

600

500

700

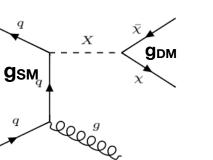
800

900 1000

E^{miss}_T [GeV]

 10^{-3}

1.2


1.1

0.9 0.8<u>⊢</u> 200

300

400

Data/Pred.

q

10³

10⁴

 $m_{MED}^{}$ (GeV)

Observed C

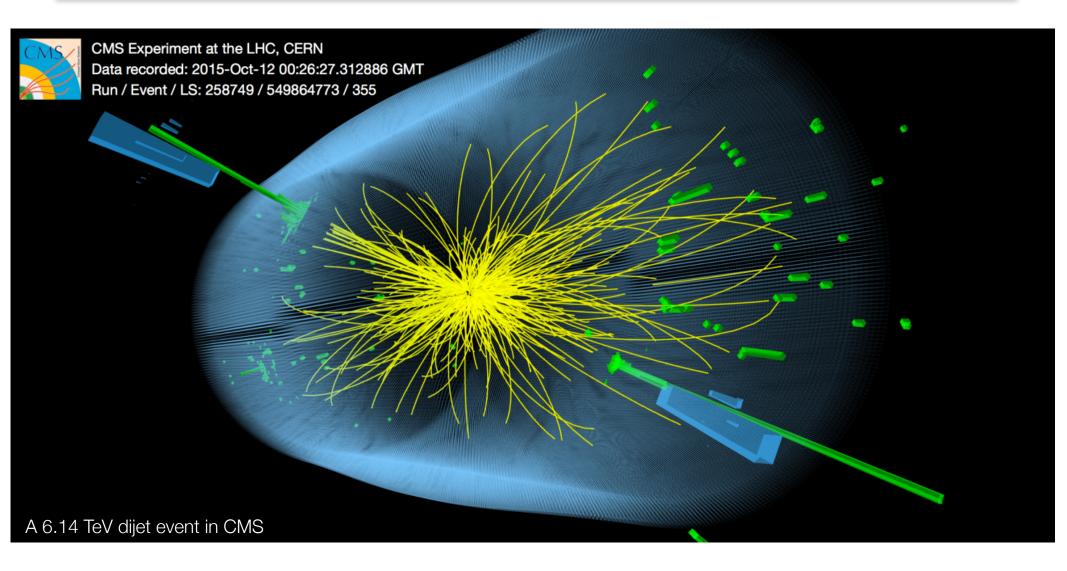
0.9

0.8

-0.7

-0.6

-0.5


-0.4

-0.3

-0.2

-0.1

 $\frac{20}{\gamma}$

ATLAS

•••• CI, $\eta_{11} = +1$, $\Lambda = 12 \text{ TeV}$

 $\cdots \cdots CI, \eta_{\iota \iota} = -1, \Lambda = 17 \text{ TeV}$ --- QBH (QBH), M_{tb}= 8.0 TeV

Theoretical uncertainties

4.0 < m_{ii} < 4.6 TeV

3.1 < m_{ii} < 3.4 TeV

2.5 < m_{ii} < 2.8 TeV

2 3 4 5 6 10

20 30

Total uncertainties

Data

TeV (constructive 0.04 0.02 interference), **QBH** 0.06 (ADD) at 8 TeV 0.04

section gain in Run 2

CMS PAS EXO-15-009 Phys. Rev. Lett. 116, 071801 PLB 754 (2016) 302-322

l imits on **contact**

interactions at 17

 Di-jet angular distributions sensitive to contact interactions, extradimensions, etc $\chi = e^{|y_1 - y_2|}$

Xp/Np N/1 N 0.06

0.02

0.06

0.04

0.02

0.06

0.04 0.02

 $\sqrt{s} = 13 \text{ TeV}, 3.6 \text{ fb}^{-1}$

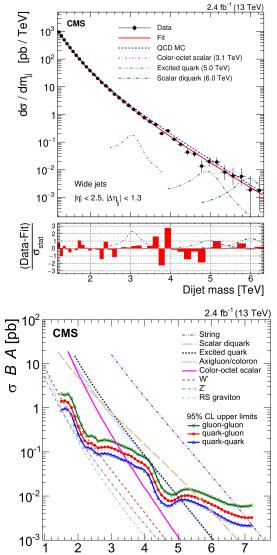
m,; > 5.4 TeV

4.6 < m. < 5.4 TeV

 $3.4 < m_{_{\rm ii}} < 4.0 ~{\rm TeV}$

2.8 < m_{ii} < 3.1 TeV

2 3 4 5 6 10

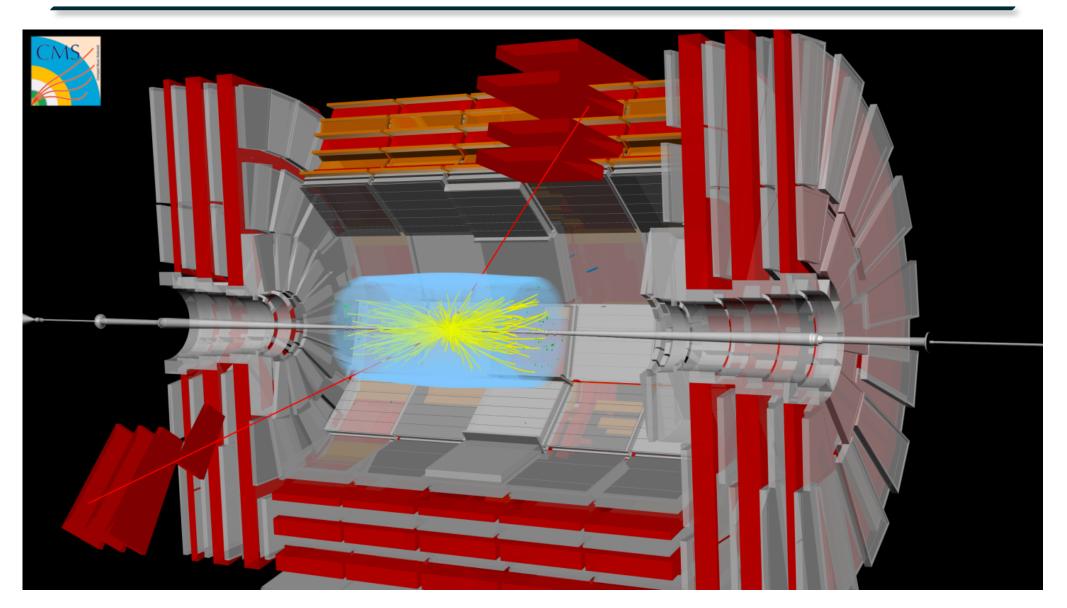

• Run 1 limits already in the multi-TeV range -> large cross

High-mass di-jet resonances

 $\frac{d\sigma}{dm_{ij}} = \frac{P_0(1-x)^{P_1}}{x^{P_2+P_3\ln(x)}}$

University of Sussex

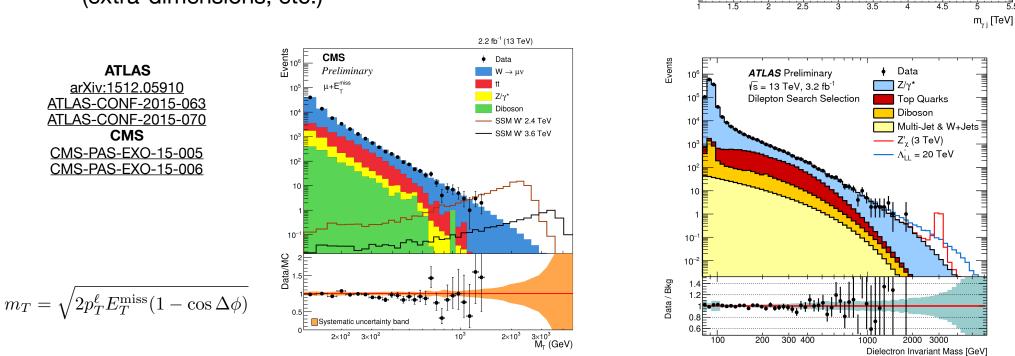
IJS



Resonance mass [TeV]

— SM

University of Sussex


🔋 bkg fit uncertainty

--- q* m_{q*} = 3.8 TeV ----- RS1 M_{th} = 4.0 TeV

data

bkg fit

- Di-lepton (Z'), photon+jet (excited quarks, QBH), lepton+E^{miss}_T (W'):
 - look at the m_{II}, m_{γj}, or at the m_T if invisible decay products involved
 - Also sensitive to **non-resonant production** (extra-dimensions, etc.)

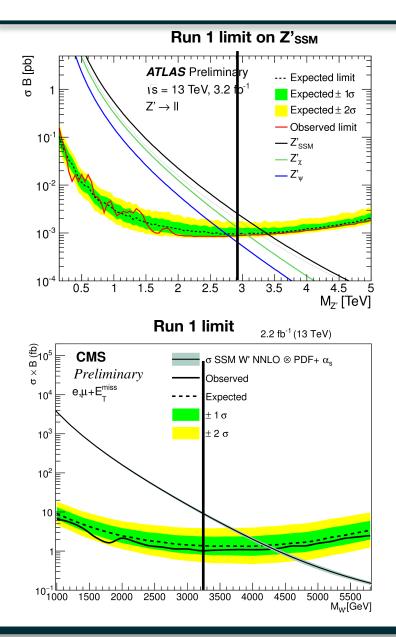
Events / 150 GeV

Significance

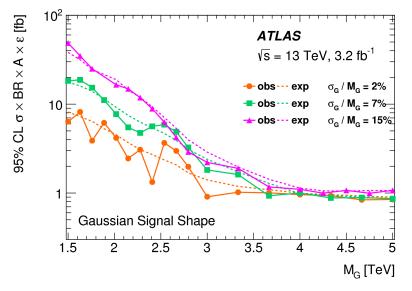
10⁵

10

10

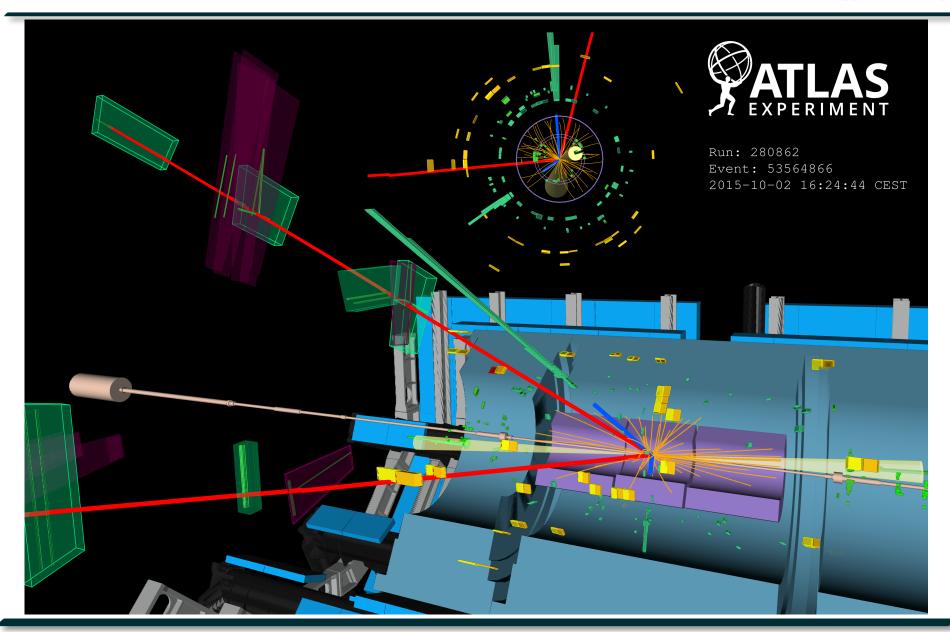

ATLAS

√s = 13 TeV, 3.2 fb⁻¹


IOP Conference - Brighton - 21-23 March 2016

University of Sussex

Limits from photon-jet resonance for different widths

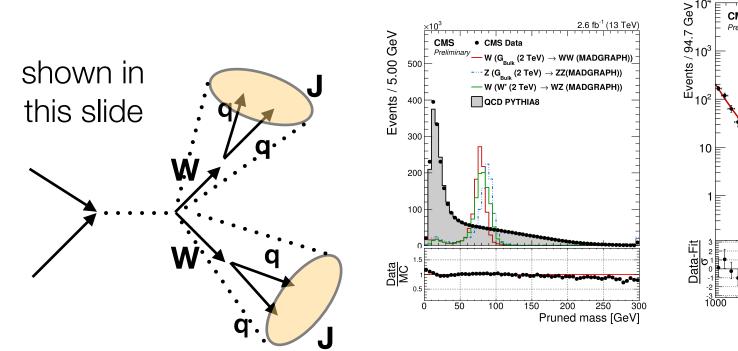


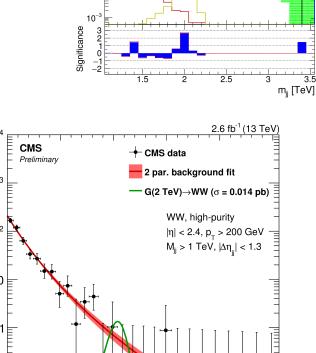
No significant excess observed

Sensitivity significantly extended with respect to Run 1

Di-boson resonances

Background model


Significance (stat) Significance (stat + sys WW Selection


1.5 TeV Bulk G_{RS} , k/ \overline{M}_{PI} 2.0 TeV Bulk G_{PS} , k/ \overline{M}_{PI}

Data

Di-boson resonances

- Looking for the decay of a heavy resonance in vector boson pairs
- · Several possible final states investigated
- Run 1: a mild excess, mostly in the di-jet channel
 - Other minor excesses in other channels, not conclusively consistent with each other

2000

1500

2500

3000

Dijet invariant mass [GeV]

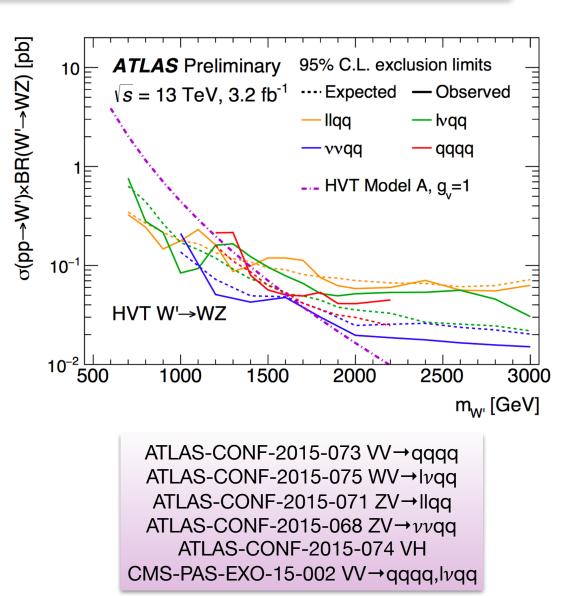
GeV

/ 100 (

10

10

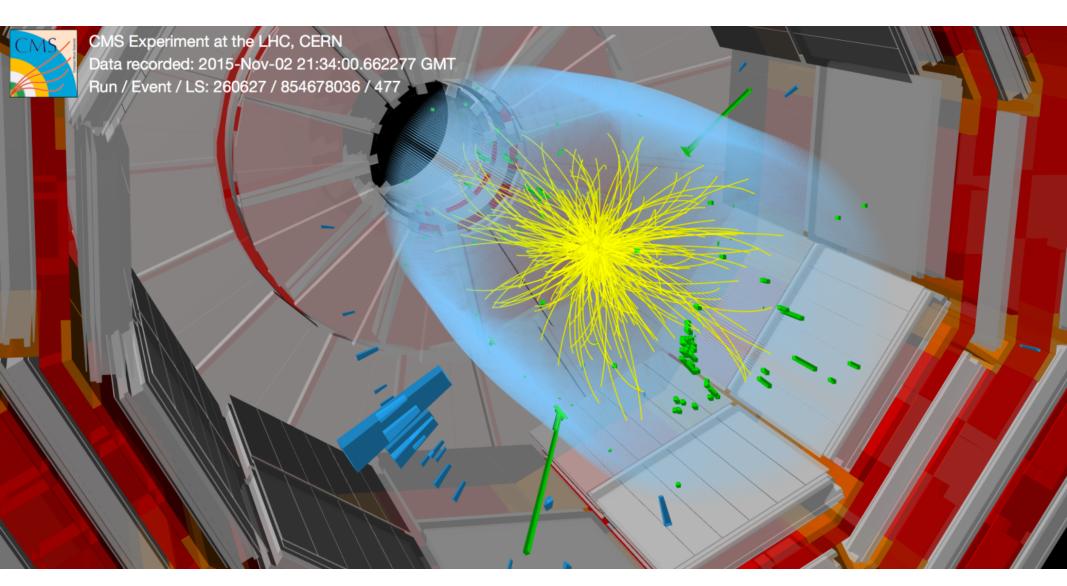
10

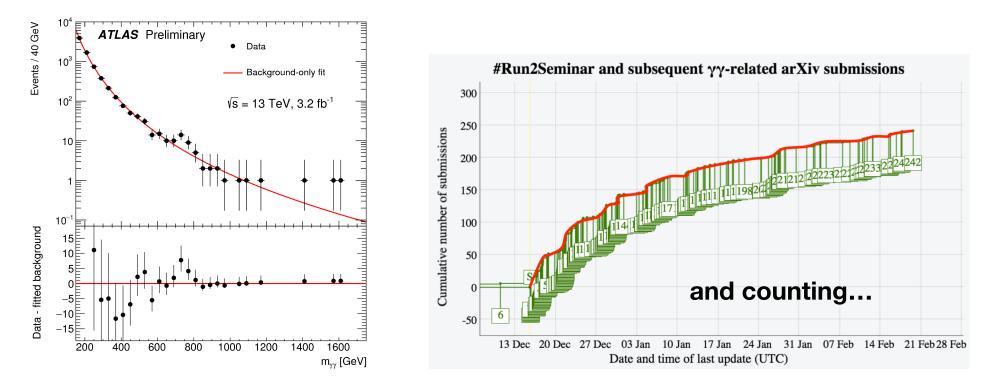

ATLAS

-vs = 8 TeV, 20.3 fb

3500

Di-boson resonances

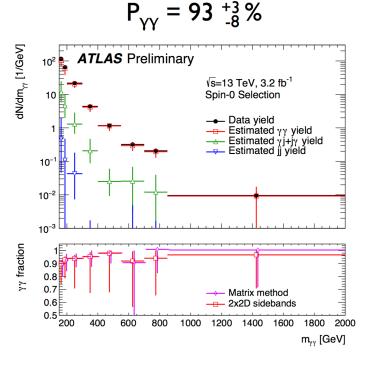

- Run 2 searches well underway
- Most of the possible final states already under investigation
- No excess above standard model...
- ...but sensitivity not yet at the level of run 1 for the individual channels
- HVT: Heavy Vector Triplet model (<u>http://arxiv.org/pdf/1402.4431v2.pdf</u>) spin 1 particles
- But also interpreted in terms of RS graviton (spin 2) and a spin 0 Higgs boson

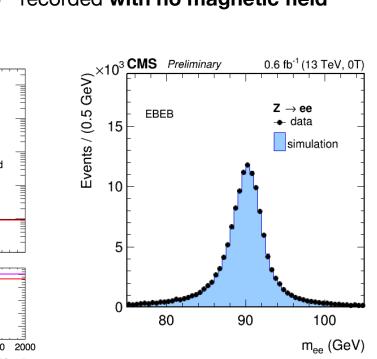


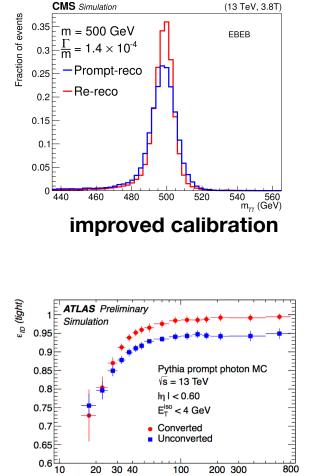
UNIVERSITY OF SUSSEX

Di-photon resonances

- Great excitement caused in the community by an excess of events around 750 GeV seen by both experiments
- A flood of possible interpretations by the theory community

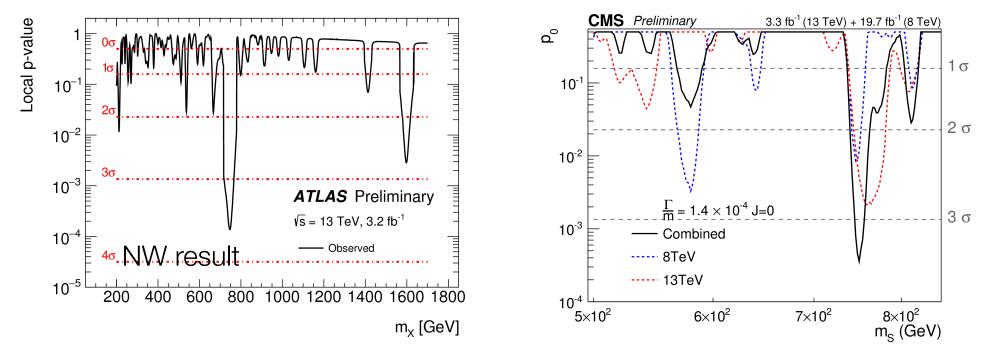



New results from last week



University of Sussex

- Both ATLAS and CMS have presented:
 - A spin 0 and a spin 2 analysis
 - Results at 13 TeV and 8 TeV (combined, in the CMS case)
 - CMS has analysed **0.6 fb**⁻¹ recorded with no magnetic field


egamma calibration with no magnetic field, CMS

di-photon purity - ATLAS

E_T [GeV]

• Run 1 results (spin 0) compatible with the excess at **1.2σ for gg**.

• CMS guotes 3.4 σ local (1.6 σ global) combined with run 1 (2.9 local in run 2 alone). Best fit for narrow width and m = 750 GeV.

IOP Conference - Brighton - 21-23 March 2016

- Spin 0: **3.9** σ local (2.3 σ global) for variable width (largest deviation for Γ = 45 GeV)

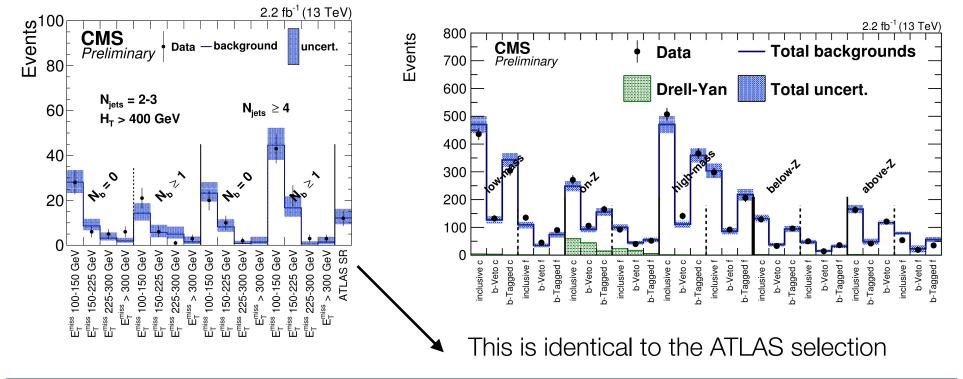
• Spin 2: 3.6 σ local (1.8 σ global) for m_G = 750 GeV, Γ_G = 7% m_G

Significance of the excess

ATLAS quotes:

- The LHC opened up a **new energy frontier** (twice!)
- Direct searches (together with Higgs measurements and precision measurements) do have severe impact on constraining BSM physics.
- Few interesting excesses spotted (above all the diphoton bump at 750 GeV)
 - We need more data...
 - ... but they are coming real soon!

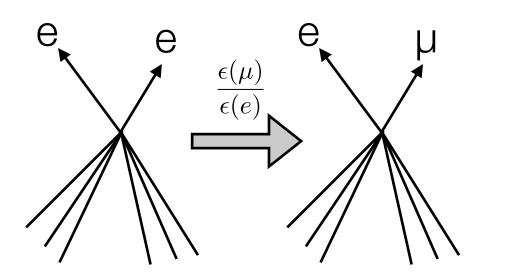
Summary

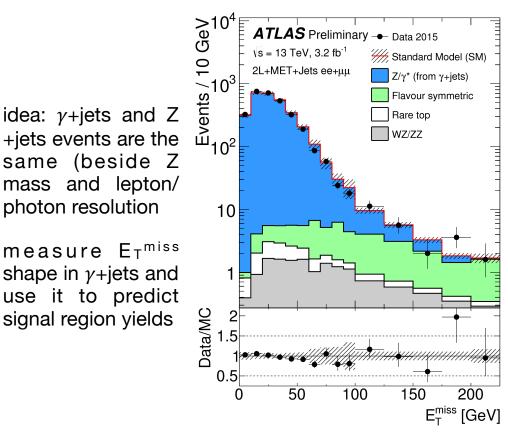

University of Sussex

MALCO THE ANSWER TO LIFE, UNVERSE AND EVERYTHING.

What does CMS say?

- 47 signal regions, looking on- and off-Z (CMS had 2.6 σ below the Z peak)
 - Defined with different jet and b-jet multiplicity, ET^{miss}, HT, mII
 - Background estimation similar to the ATLAS case.



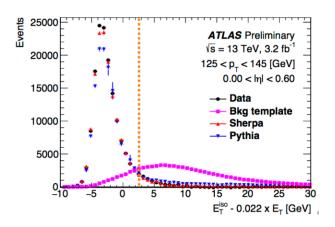

IOP Conference - Brighton - 21-23 March 2016

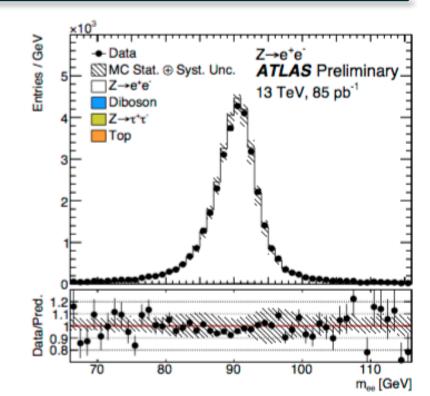
ATLAS Z+ET^{miss}

- Flavour symmetric background ٠ (top pair production, WW, etc.): ee:µµ:eµ events are in ratio 1:1:2
- Validated with a sideband fit to m

- **Z+ET**^{miss} background tricky (it mainly comes from detector effects)
- Estimated from γ +jets events

Additional info ATLAS

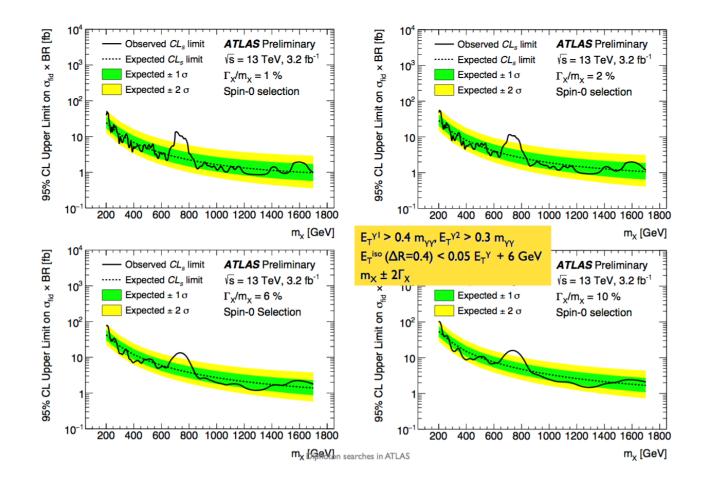

 At E_T^Y > 100-200 GeV, resolution dominated by constant term...

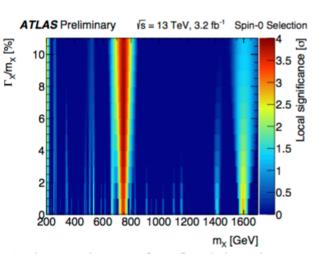

✓ c = 0.6% - 1.5%

$$\frac{\sigma_E}{E} = \frac{a}{\sqrt{E}} \oplus \frac{b}{E} \oplus c$$

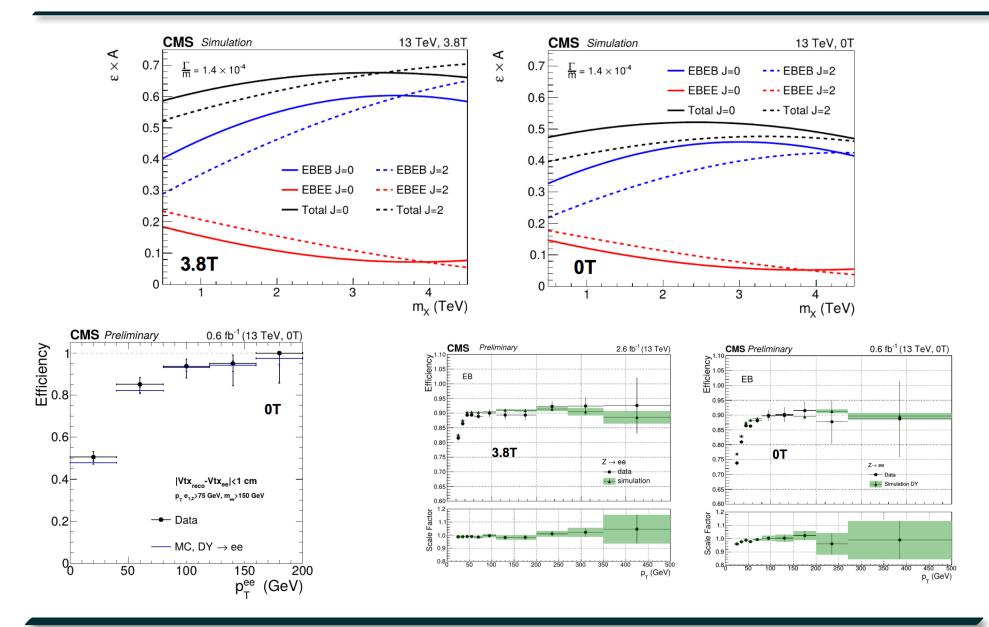
Uncertainties

- ✓ Energy scale: ±(0.4%-2%)
- ✓ Energy resolution (E_T^{γ} =300 GeV): ±(80%-100%)



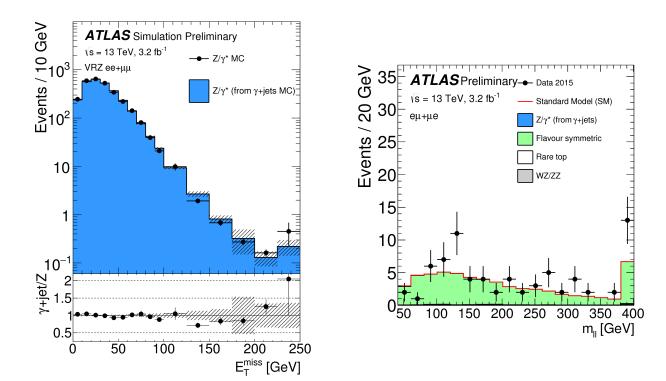

From Marco Del Mastro's talk at Moriond EW

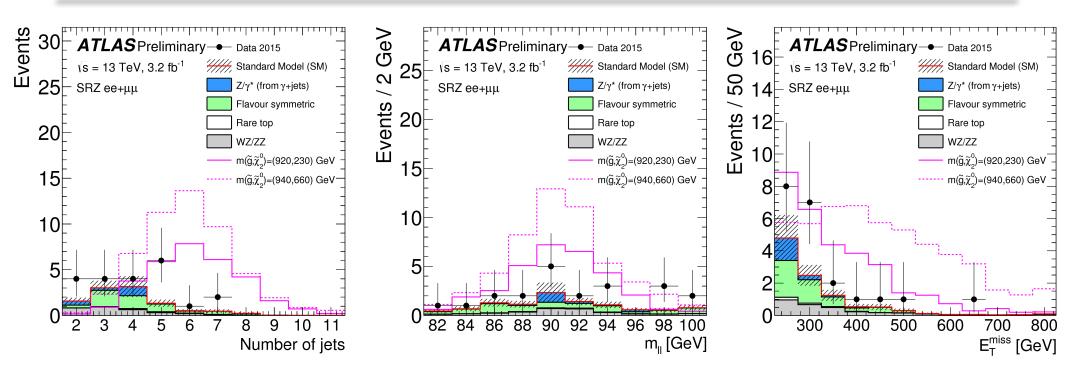
Additional info ATLAS


University of Sussex

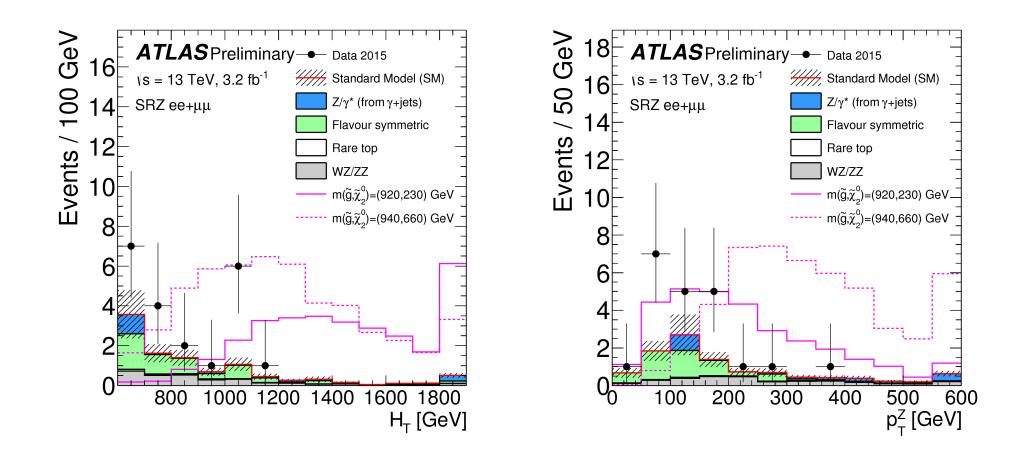
From Marco Del Mastro's talk at Moriond EW

Additional info CMS


University of Sussex

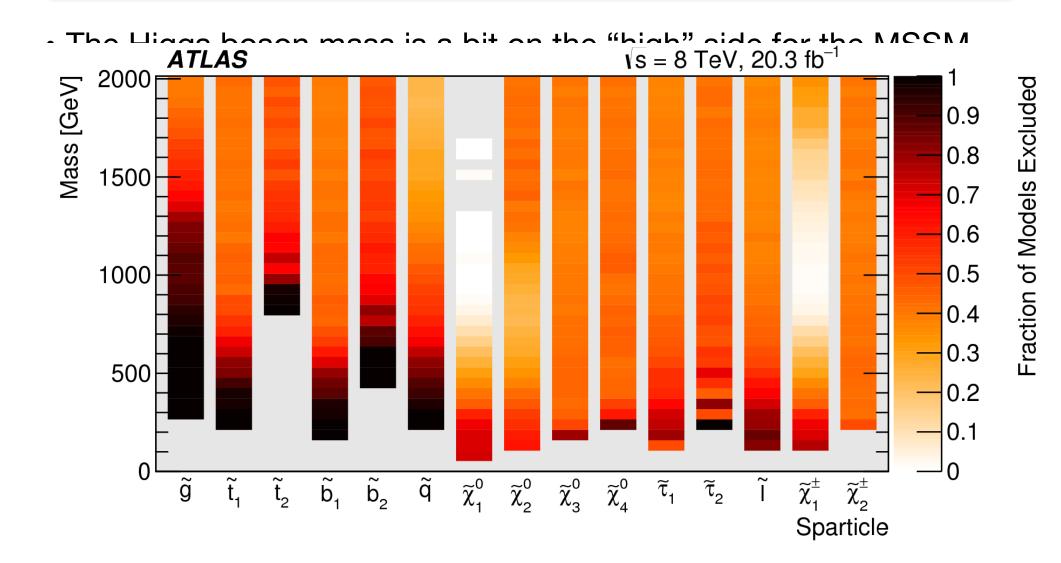

2.7 fb⁻¹ (13 TeV, 3.8T) CMS Preliminary 0.6 fb⁻¹ (13 TeV, 0T) 3.3 fb⁻¹ (13 TeV) CMS Preliminary CMS Preliminary പ് Events / (20 GeV) 0 01 Events / (20 GeV) EBEB Data EBEB Data 1σ Fit model Fit model 10 $\pm 1 \sigma$ $\pm 1 \sigma$ ±2 σ ±2σ 2σ 10 10⁻² $\frac{\Gamma}{m} = 1.4 \times 10^{-2} \text{ J}=0$ 3σ 10⁻³ Combined ----- 0T 0.6 fb⁻¹ ----- 3.8T 2.7 fb⁻¹ $(data-fit)/\sigma_{stat}$ $(data-fit)/\sigma_{stat}$ 10-4 8×10² m_s (GeV) 5×10² 7×10² 6×10² 6 CMS Preliminary 3.3 fb⁻¹ (13 TeV) + 19.7 fb⁻¹ (8 TeV) -2 $\Delta \log L$ 1000 1200 1400 1600 1000 1200 1400 1600 800 400 600 400 600 800 m = 750, J = 0 $\frac{\Gamma}{m} = 0.014 \times 10^{-2}$ m_{y y} (GeV) m_{γγ} (GeV) 5 Spin-0 Combined 4 8TeV - 13TeV 3 2 1 0^L0 $\frac{8}{\sigma^{13TeV}} \cdot B_{\gamma,\gamma} (fb)$ 2 6

Additional info CMS



Z+jets excess

Region	$E_{\mathbf{T}}^{\mathbf{miss}}$ [GeV]	$H_{\mathbf{T}}$ [GeV]	$n_{\mathbf{jets}}$	$m_{\ell\ell} \ [{f GeV}]$	SF/DF	$\Delta \phi(\mathbf{jet}_{12}, \boldsymbol{p}_{\mathrm{T}}^{\mathrm{miss}})$	$m_{\mathrm{T}}(\ell_3, E_{\mathrm{T}}^{\mathrm{miss}})$ [GeV]	$n_{ m b-jets}$
Signal regions								
SRZ	> 225	> 600	≥ 2	$81 < m_{\ell\ell} < 101$	\mathbf{SF}	> 0.4	-	-
Control regions								
Z normalisation	< 60	> 600	≥ 2	$81 < m_{\ell\ell} < 101$	\mathbf{SF}	> 0.4	-	_
$\operatorname{CR-FS}$	> 225	> 600	≥ 2	$61 < m_{\ell\ell} < 121$	DF	> 0.4	-	-
CRT	> 225	> 600	≥ 2	$m_{\ell\ell} \notin [81, 101]$	SF	> 0.4	-	-
Validation region	S							
VRZ	< 225	> 600	≥ 2	$81 < m_{\ell\ell} < 101$	\mathbf{SF}	> 0.4	-	_
VRT	100 - 200	> 600	≥ 2	$m_{\ell\ell} \notin [81, 101]$	SF	> 0.4	-	-
VRS	100 - 200	> 600	≥ 2	$81 < m_{\ell\ell} < 101$	SF	> 0.4	-	-
VR-FS	100 - 200	> 600	≥ 2	$61 < m_{\ell\ell} < 121$	DF	> 0.4	-	-
VR-WZ	100 - 200	-	-	-	3ℓ	-	< 100	0
VR-ZZ	< 100	-	-	-	4ℓ	-	-	0
VR-3L	60 - 100	> 200	≥ 2	$81 < m_{\ell\ell} < 101$	3ℓ	> 0.4	-	-


	VRS	VR-WZ	VR-ZZ	VR-3L
Observed events	56	89	20	7
Total expected background events	52.6 ± 9.1	87 ± 10	15.5 ± 3.4	6.5 ± 1.6
Flavour symmetric ($t\bar{t}$, Wt , WW and $Z \rightarrow \tau\tau$) events	18.9 ± 4.8	1.3 ± 0.4	0	0.3 ± 0.2
WZ/ZZ events	7.5 ± 1.7	82 ± 10	15.5 ± 3.4	4.9 ± 1.6
Z/γ^* + jets events	24.8 ± 7.6	2.7 ± 2.8	0	0.2 ± 0.2
Rare top events	1.4 ± 0.2	0.9 ± 0.4	0.04 ± 0.02	1.0 ± 0.1

Region	Flavour-symmetry	Sideband fit
SRZ	5.1 ± 2.0	6.1 ± 1.7
VRS	18.9 ± 4.8	20.5 ± 5.6

	SRZ
Observed events	21
Total expected background events	10.3 ± 2.3
Flavour symmetric ($t\bar{t}$, Wt , WW and $Z \rightarrow \tau\tau$) events	5.1 ± 2.0
WZ/ZZ events	2.9 ± 0.8
Z/γ^* + jets events	1.9 ± 0.8
Rare top events	0.4 ± 0.1
<i>p</i> -value	0.013
Significance	2.2
Observed (Expected) S^{95}	$20.0(10.2^{+4.4}_{-3.0})$

Source	Relative systematic uncertainty [%]
	SRZ
Total systematic uncertainty	22
Flavour symmetry (statistical)	14
Flavour symmetry (systematic)	12
$Z/\gamma^* + \text{jets} (\text{systematic})$	7.8
WZ generator uncertainty	7.6
$Z/\gamma^* + \text{jets} \text{ (statistical)}$	2.2

