

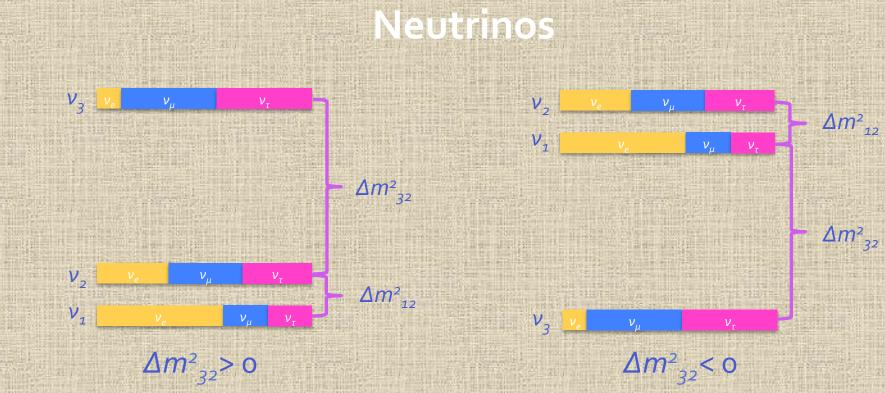
The world of accelerator neutrinos

Dr. Anna Holin University College London IOP HEPP 2016, 22.03.2016

- Neutrino oscillations and mysteries left to discover
- How do we make a neutrino beam?
- Current accelerator neutrino experiments, with some atmospheric neutrinos as well
- Future accelerator neutrino experiments
- Summary

 Apologies for any experiments missed out due to limited time (e.g. ICECUBE, PINGU, ultra-high-energy neutrinos and others)!

Neutrinos

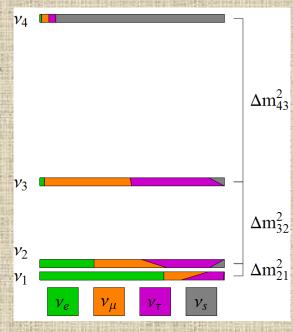

- Three active flavours of neutrino: v_{e} , v_{μ} , and v_{τ}
- Only definite sign of physics beyond the Standard Model as they oscillate between flavours as they propagate through space and matter -> they must have mass!

 $\begin{pmatrix} v_{e} \\ v_{\mu} \\ v_{\tau} \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & \cos\theta_{23} & \sin\theta_{23} \\ 0 & -\sin\theta_{23} & \cos\theta_{23} \end{pmatrix} \begin{pmatrix} \cos\theta_{13} & 0 & \sin\theta_{13}e^{-i\delta} \\ 0 & 1 & 0 \\ -\sin\theta_{13}e^{i\delta} & 0 & \cos\theta_{13} \end{pmatrix} \begin{pmatrix} \cos\theta_{12} & \sin\theta_{12} & 0 \\ -\sin\theta_{12} & \cos\theta_{12} & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} v_{1} \\ v_{2} \\ v_{3} \end{pmatrix}$

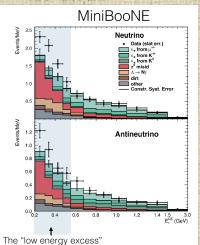
- 3 oscillation mixing angles, 1 CP-violating phase
- 2 independent mass differences for standard oscillations

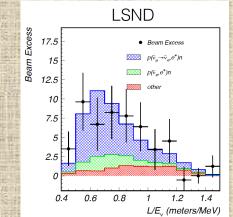
Neutrino oscillations: NOBEL PRIZE 2015! for Takaaki Kajita from Super-K and Arthur McDonald from SNO

- Two possible mass hierarchies which mass eigenstate is the heaviest?
- Affects neutrino oscillation probabilities



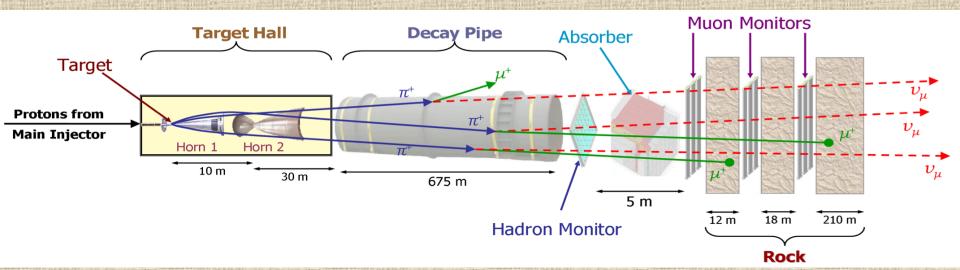
Mysteries we want to uncover


- What is the neutrino mass hierarchy? Implications for lepton generation ordering questions and also neutrinoless doublebeta decay
- Is there CP-violation in the neutrino sector, i.e. $\delta_{CP} \neq 0$?
- Are there sterile neutrinos?
- What is the neutrino mass?
- Is the neutrino Dirac or Majorana?
- What is the precise value of ϑ_{23} ? Is this mixing angle maximal?
- How much do neutrinos contribute to dark matter?
- Are there undiscovered neutrino behaviours/mysteries?


Sterile Neutrinos

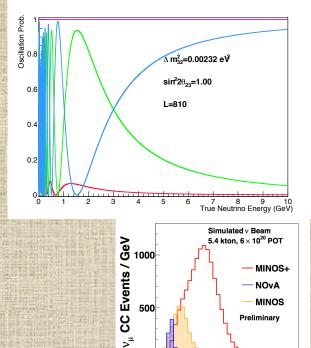
- Are there sterile neutrinos?
- Some hints from data, e.g. LSND, MiniBooNE
- Simplest model is 3+1
- There are alternative explanations for some of the excesses seen (e.g. could MiniBooNE just have underestimated the o background?)

Experiments continue to investigate



$$\begin{pmatrix} \nu_{e} \\ \nu_{\mu} \\ \nu_{\tau} \\ \nu_{s} \end{pmatrix} = \begin{pmatrix} U_{e1} & U_{e2} & U_{e3} & U_{e4} \\ U_{\mu 1} & U_{\mu 2} & U_{\mu 3} & U_{\mu 4} \\ U_{\tau 1} & U_{\tau 2} & U_{\tau 3} & U_{\tau 4} \\ U_{s1} & U_{s2} & U_{s3} & U_{s4} \end{pmatrix} \begin{pmatrix} \nu_{1} \\ \nu_{2} \\ \nu_{3} \\ \nu_{4} \end{pmatrix}$$

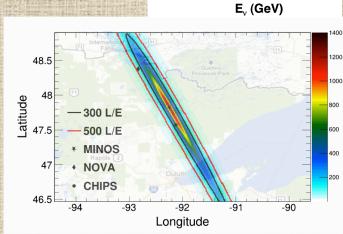
How do we make a neutrino beam



Impact protons onto target to generate hadrons (mostly pions and kaons)

- Focus those with magnetic horns
- Hadrons then decay in a long pipe into mostly muons and neutrinos
- Those and any remaining protons absorbed by hadron absorber and rock
- Only neutrinos are left in the beam to traverse the earth and detectors

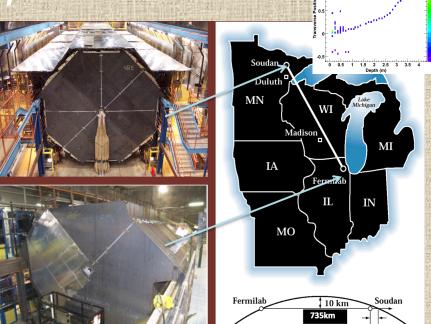
Some comments on neutrino beams

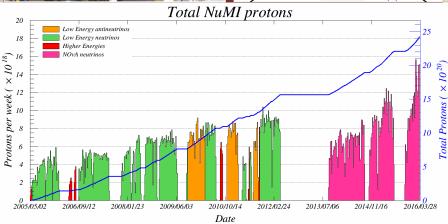

- Neutrino beams are normally dominated by v_{μ}
- Those then oscillate away into v_e and v_τ as they traverse the earth – this depends on the real oscillation parameters
- There are several ways to adjust neutrino beams for our measurements:
 - Position of target with respect to the horns selects whether higher or lower momentum hadrons are focused and is the primary driver of the on-axis beam energy
 - We can position our detectors off-axis to sample a narrow-band lower energy neutrino spectrum
 - We can reverse the horn current to focus negatively charged hadrons instead to get an anti-neutrino dominated beam instead - but lower flux is the price

10

15

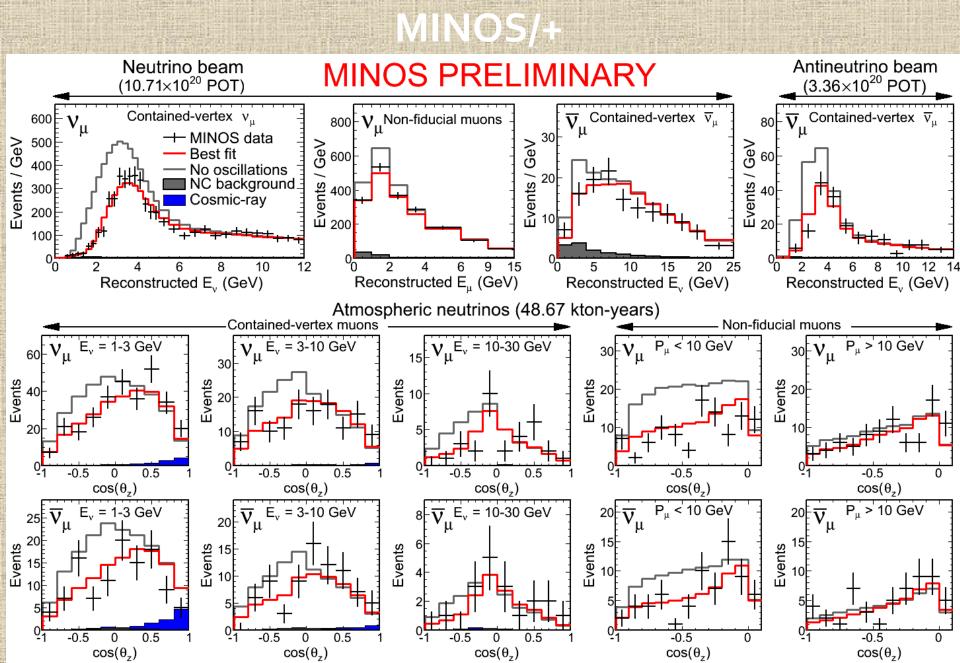
20

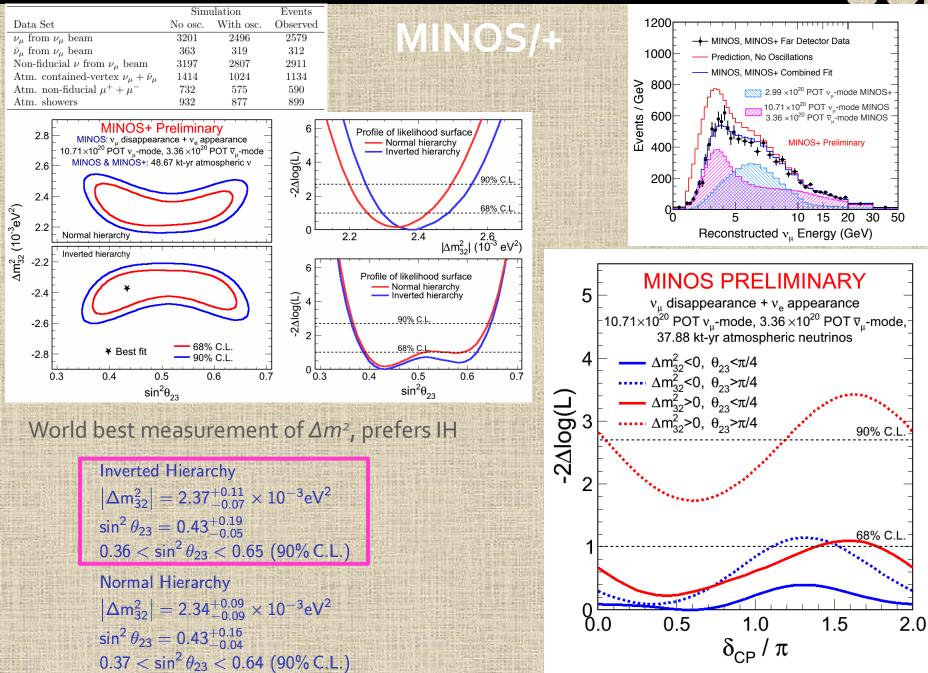

9


UCL

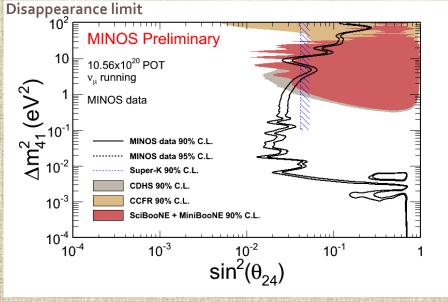
MINOS/-

- Functionally identical iron scintillator calorimeters, magnetised to bend muon tracks
- A 1kT Near detector measures neutrino spectrum 1km away from the NuMI beam source at FNAL, before oscillations
- A 5.4kT Far detector measures neutrino spectrum 735km away from FNAL, in the Soudan Mine, MN, after neutrinos have traversed the Earth and oscillated
- MINOS taking beam data since mid 2005, and as MINOS+ since Sep. 2013
- MINOS/+ will finish taking data forever this coming June
- only wideband on-axis experiment
- Many measurements have come out of MINOS, some analyses still to come
- Currently NuMI beam running at highest power ever of ~520kW
- Hope to see good data before MINOS+ finish




MINOS 10.71x1020 POT neutrino mode MINOS 3.36x1020 POT in anti-neutrino mode MINOS+ >8x1020 POT in neutrino mode so far

AUCL

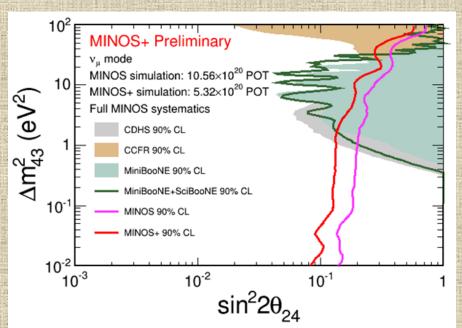


AUCI

MINOS/-

.

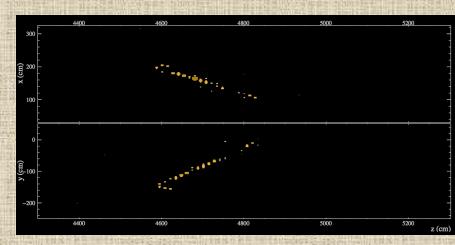
•


Combination with v, appearance from Bugey Reactor experiment 10^{2} **INOS Preliminary** MINOS data: 10.56×10²⁰ POT 10 $\Delta m^{2}_{1^{-1}}(eV^{2})$ SND 90% CL CARUS 90% CL INOS/Bugey* 95% CL 10⁻³ GLoBES 2012 fit with new reactor luxes, courtesy of P. Huber 10^{_4} ____ 10^{_7} 10-4 10⁻³ 10^{-2} 10⁻¹ 10⁻⁶ 10⁻⁵ $\sin^2 2\theta_{\mu e} = 4|U_{e^4}|$

MINOS gives strong constraint on muon neutrino to sterile neutrino oscillations for $\Delta m_{43}^2 < 1 \text{ eV}^2$

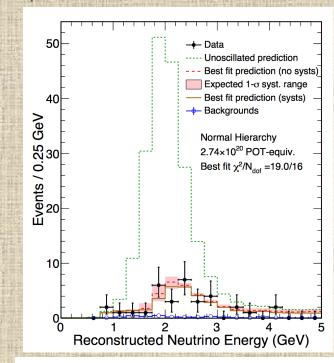
90% exclusion over 4 orders of magnitude

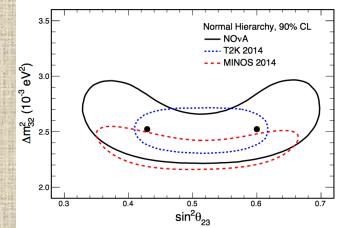
Combining with Bugey increases tension between experiment results – a lot of LSND and MiniBooNE region excluded


Working on anti-neutrino sterile analysis and sterile neutrinos in electron neutrino appearance

ΝΟνΑ

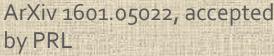
- NOvA is 14.6mrad off-axis in ME NuMI beam to hone in on the oscillations peak, also reduces muon neutrino and neutral current backgrounds
- Giant 14kT FD at Ash River, highly active, filled with liquid scintillator
- Smaller ND (300T) at FNAL 105m underground
- Signal collected by APDs from 330000 6.6cmx3.9cmx15.5m cells
- Excellent background reduction, taking data

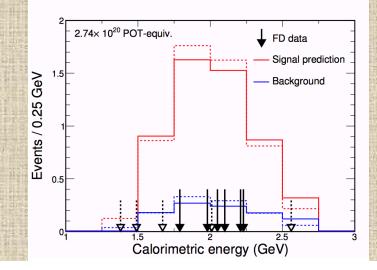


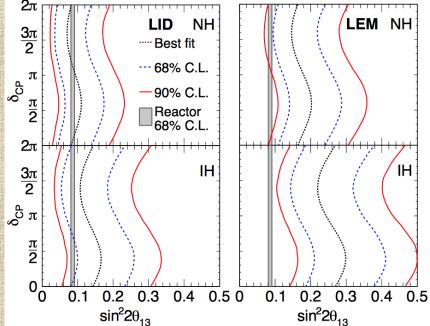


NOVA ArXiv <u>1601.05037</u>, accepted by PRD

- First disappearance and appearance analyses have been published
- Disappearance analysis observes 33 Ccnumu events when 211.8 are expected for no oscillations (with 3.4 BG). Best fit prediction is 35.4 events for both hierarchies
- 68% C.L. for sin²θ₂₃ = [0.38, 0.65] for NH, = [0.37, 0.64] for the IH
- two statistically degenerate bestfit values of sin²θ₂₃ of 0.43 and 0.60 for NH, and 0.44 and 0.59 for IH;
- $\Delta m_{23}^2 = 2.52^{+0.2} 0.18 \times 10^{-3} \text{eV}^2$ for NH
- Δm²₂₃=(2.59±0.19)x10⁻³eV² for IH

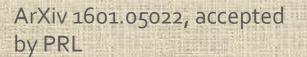


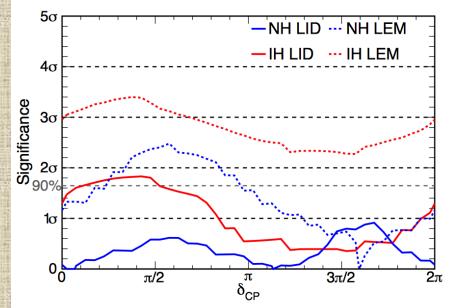



ΝΟνΑ

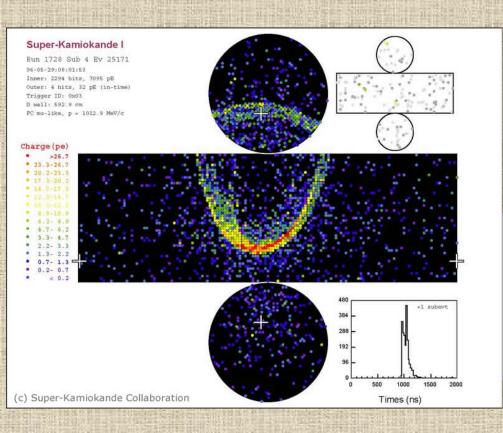
- First appearance analysis accepted by PRL
- Predict very small background of about 1 event for each of the two PIDs
- Cut on Reco. E for primary selector (LID) to remove cosmics
- Observe 6 events (3.3σ excess) for LID
- Observe 11 events (5.3σ excess) for LEM
- Probability of observing this overlap (all LID events are selected by LEM) is 7.8%
- Data are compatible with 3-flavour mixing b^{a} at the reactor value of ϑ_{13}
- For secondary analysis at least 13% of pseudo-experiments get at least as many event as data

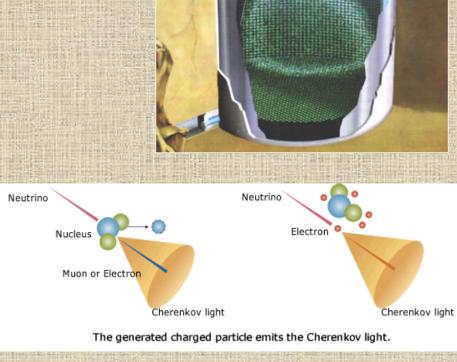
	$\operatorname{Beam}\nu_e$	NC	$ u_\mu{ m CC}$	$ u_{ au} \operatorname{CC} $	Cosmic	Total Bkg.
LID	0.50	0.37	0.05	0.02	0.06	0.99
LEM	0.50	0.43	0.07	0.02	0.06	1.07



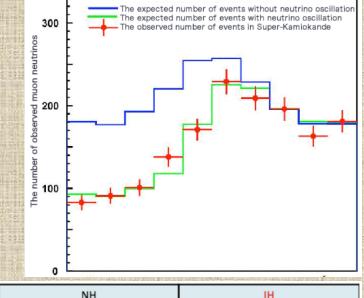


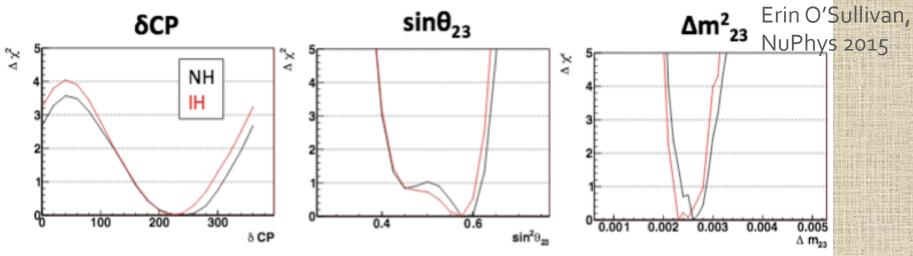
NOvA


- If fixing to reactor ϑ_{13} , using the secondary selector, IH is disfavoured at >90% C.L. for all values of δ_{CP} . For NH, the range 0.25 $\pi < \delta_{CP} < 0.95\pi$ is disfavoured at 90% C.L.
- NOvA is now working on the second analyses, with ~twice the POT
- Analysis improvements are being incorporated
- Expect to release new results in the Summer



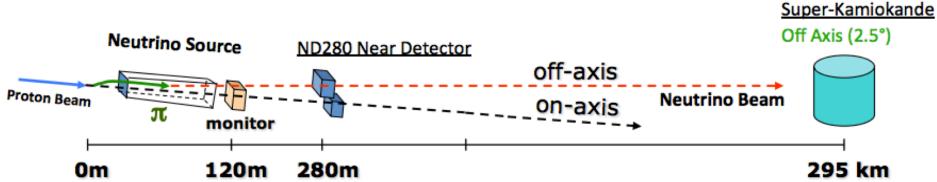
18


- Giant Water Cherenkov detector
- 50kton detector volume (22.5kton fiducial)
- 11146 20" PMTs (ID) and 1885 8" PMTs (OD)

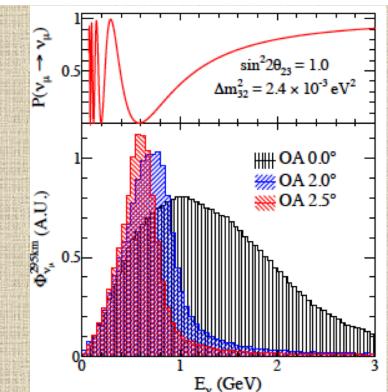


Super-K

- On its own can use atmospheric neutrinos to measure neutrino oscillations
- Also serves as the T2K FD
- For a long time had the world's best measurement of sin²2θ₂₃, now improved upon by T2K
- Best fit is non-maximal mizing
- Super-K data combined with T2K slightly favours Normal Mass Hierarchy



	NH		IH			
δCP	sin²θ ₂₃	Δm_{23}^2	δCP	Sin ² θ_{23}	Δm ² ₂₃	
240	0.575	0.0026	220	0.575	0.0023	

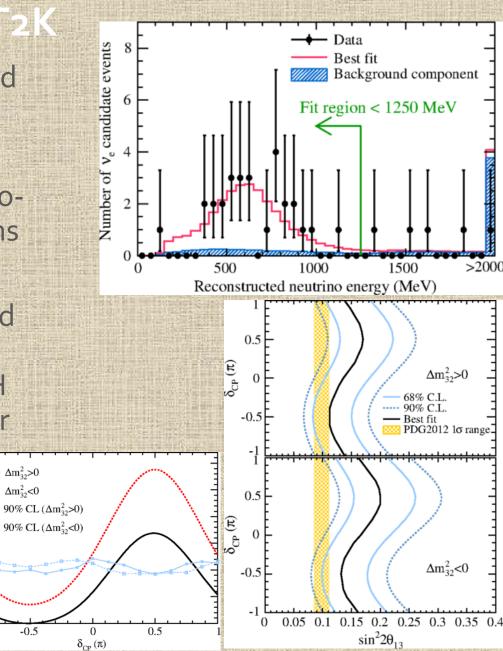


UCI

T2K

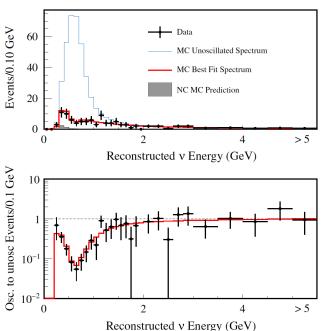
- T2K has a 295km baseline, uses Super-K as FD, off-axis
- Use their ND to determine the neutrino flux (with NA61 results), and the FD to measure neutrino oscillations
- T2K observes a narrow band beam peaked at about 0.6GeV

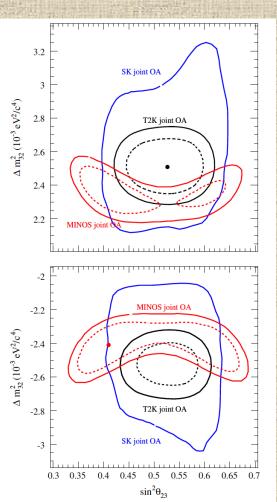
 $\Delta m_{22}^2 < 0$

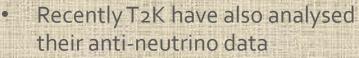

-0.5

InlA

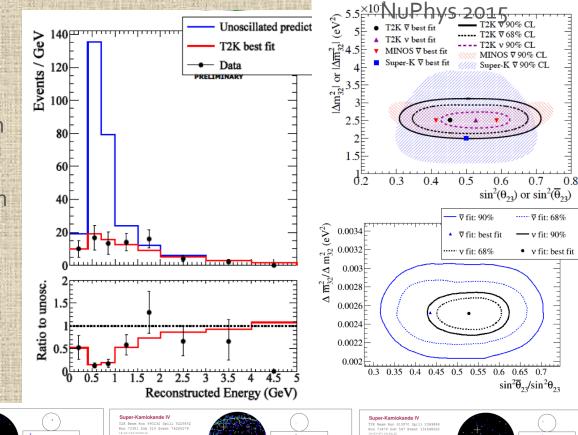
0 L -1

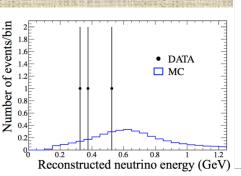


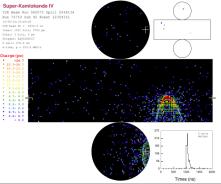

- Appearance analysis published in PhysRevLett.112.061802 (2014)
- Observed 28 electron neutrino-• like events, with no oscillations expectation of 4.95± 0.55
- Assuming maximal mixing and $\Delta m_{23}^{2} = 2.4 \times 10^{-3} \text{eV}^{2}, \text{T2K gets}$ $\sin^{2} 2 \vartheta_{13} = 0.140^{+0.038} \text{ for NH}$ and $\sin^{2} 2 \vartheta_{13} = 0.170^{+0.045} \text{ for}$ $\Delta m_{32}^2 > 0$
- 7.3σ significance over $\sin^2 2 \vartheta_{13} = 0$ hypothesis T2K prefers NH so far

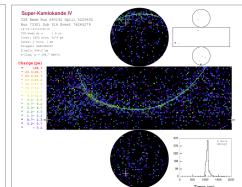

•

- Disappearance analysis published in PhysRevD.
 91.072010 (2014)
- Observed 120 electron neutrino-like events, with no oscillations expectation of 446± 22.5
 - Also did joint numu+nue analysis
- Assuming reactor constraints, get slight preference for NH
- 0.15π<δ_{CP}<0.83π
 disfavoured at <10%
 probability






Helen O'Keeffe,



- Observed 34 ccnumu events with expected no oscillations of 103.6
- They have also observed electron anti-neutrinos in a ccnumubar beam for the first time
- They have many improvements underway and are constantly taking data

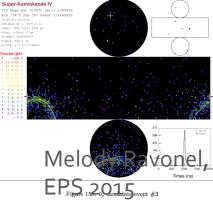
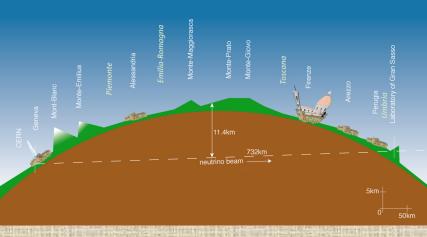
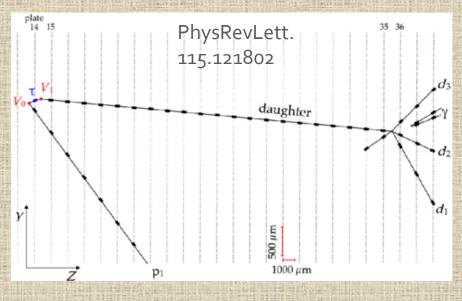


Figure 156: $\bar{\nu}_e$ candidate event #1


Figure 157: $\bar{\nu}_e$ candidate event #2


AUCI

 OPERA uses the CNGS beam from CERN to Gran Sasso

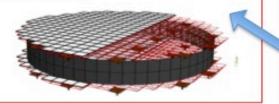
- Wide band beam optimized for tau neutrino appearance
- 15000 emulsion bricks as detector mass
- Have seen 5 events, 5*o* tau neutrino appearance signal events, consistent with standard 3-flavour mixing

Future Experiments (including Liquid Argon)

AUCL

CHIPS

Courtesy of Jenny Thomas


<u>CHIPS</u>

MOTIVATION

- Drastically reduce costs for a Water Cherenkov detector
 - Design only for beam neutrinos
 - Submerge in natural body of wat for mechanical support
 - Reduce total number of PMTs
- Use small 3" PMTs for position and timing to maintain efficiency

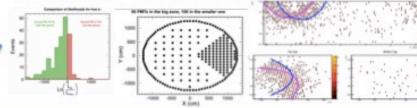
PLANS

- Design of large 30m diameter detector "slice" is underway at Madison/PSL
 - 1.5kt volume for 2m height
- Idea is to build end-caps in shallow water then tow to deep water and sink
- Raise to increase wall height using floating docks in the water to increase instrumented volume over time
- Component panels will hold PMT planes
- Cost of wall : 100k/kt!
- Synergy with ICECube GEN II work including PMTs and new readout development

PROGRESS

.

- 50T CHIPS-M detector deployed at 50m depth and raised after one year
- Recirculated water via shore filter
- 2 detector planes tested in 2015 deployment:
 - one with Km3Net technology
 - One using ParisROC readout
- Read out via fibre cable
- Measured cosmic rate at pit bottom

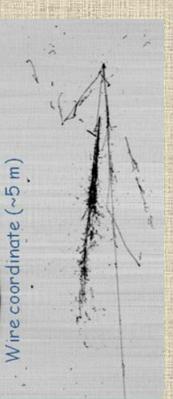


WATER

- In test setup Wentworth water achieved > 30m attenuation length in 2 months
 - Equivalent to one full volume/10 days
- This was used in the simulations

SIMULATION

- Major progress on simulation of detector (based on WCSim) and Reconstruction based on MiniBoone approach but tailored to timing and spaciel resolution of small tubes
- Study ongoing of "how low can you go?" for PMT coverage


DUNE

- DUNE is the flagship neutrino experiment of the future
- Building an all new beam line from FNAL to Sanford
- On-Axis wide-band beam, long long baseline (1300km), 60-120GeV protons, 1.2MW power initially, doubled after upgrade
- Using liquid argon detector technology for exquisite event identification
- 4 10kTon modules planned
- Should have discovery sensitivity for MH and deltaCP

Immense world-wide effort ongoing, with prototypes at CERN and Fermilab

Will probably start taking data in the mid 2020s if all goes to plan

UCL

Fermilab SBN programme

- Hunting for the sterile neutrino in short-baseline oscillations in the Booster Neutrino Beam at FNAL using three LAr detectors (SBND, MicroBooNE, ICARUS)
- Lower energy (BNB uses 8GeV protons on Beryllium target, 1 focusing horn)
- Part of an extensive LAr complex at Fermilab (others are LArIAT, 35ton,...)

Fermilab SBN programme

Run 3493 Event 41075, October 23rd, 2015

- MicroBooNE already taking data beautiful neutrino event displays
- ICARUS being re-commissioned at FNAL

75 cm

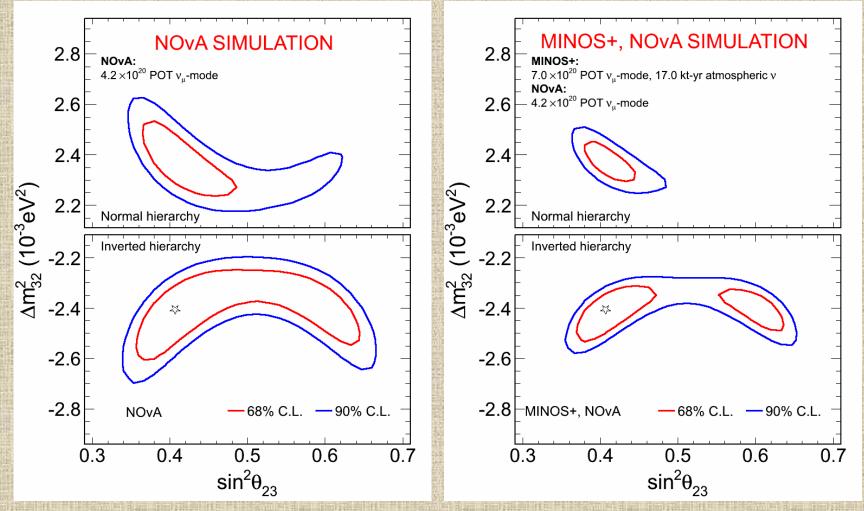
SBND in advanced design stages, hopefully will start taking data in the next 2 years

- 25 times bigger than SuperK! 56okTon water Cherenkov detector
- Using 125000 highly sensitive photodetectors!
- multipurpose goals including precision neutrino oscillations measurements
- Will be in JPARC beam likelyhood of upgrade to >1MW power
- In planning and R&D stages, envisioned to start taking data around 2025

UCL

Summary

- The (accelerator) neutrino experiment community is more active than ever
- There are many on-going and future experiments trying to answer important neutrino physics questions
- The race is on to determine the mass hierarchy and, if they are there, discover CP-violation in the neutrino sector and possibly sterile neutrinos
- Neutrinos have surprised us many times, and it would be very exciting if they did so again!



Back-Up

•

UCI

The power of combining

Accessing the same beam, but different oscillations phase space, means that one can combine data to yield even better results