Rapid thermal co-annihilation through bound states^{1,2}

Mikko Laine

(University of Bern, Switzerland)

 2 Supported by the SNF under grant 200020-155935.

¹ S. Kim and ML, 1602.08105.

Introduction

Could Weakly Interacting Massive Particles be dark matter?

An initially thermal system chemically decouples when pair annihilation is not fast enough to track the equilibrium distribution, which is $n_{\rm eq} \sim (\frac{MT}{2\pi})^{3/2} e^{-M/T}$ at $T \ll M$.

Back of the envelope estimate

Equate the Hubble rate with the co-annihilation rate:

$$H \sim n \langle \sigma v \rangle \iff \frac{T^2}{m_{\rm Pl}} \sim \left(\frac{MT}{2\pi}\right)^{3/2} e^{-M/T} \frac{\alpha^2}{M^2} \stackrel{\alpha \sim 0.01}{\Rightarrow} T \sim \frac{M}{25}$$

Compare $e \equiv Mn$ at the freeze-out with radiation $\sim T^4$:

LHC pushes up M, so there may be a danger "overclosure".

Could efficient decays help to avoid overclosure?

Indeed co-annihilating particles with $v \ll 1$ interact "strongly".

In particular the "Sommerfeld effect" ³ has been widely discussed.⁴ It is an $\gtrsim O(1)$ correction for $T \lesssim \alpha^2 M$.

³ L.D. Landau and E.M. Lifshitz, *Quantum Mechanics, Non-Relativistic Theory,* Third Edition, §136; V. Fadin, V. Khoze and T. Sjöstrand, *On the threshold behavior of heavy top production,* Z. Phys. C 48 (1990) 613.

⁴ e.g. J. Hisano, S. Matsumoto, M. Nagai, O. Saito and M. Senami, *Non-perturbative effect on thermal relic abundance of dark matter*, hep-ph/0610249; J.L. Feng, M. Kaplinghat and H.-B. Yu, *Sommerfeld Enhancements for Thermal Relic Dark Matter*, 1005.4678.

Rapid summary of the Sommerfeld effect

For attractive *s*-wave interaction:

$$S_1 = \frac{X_1}{1 - e^{-X_1}} , \quad X_1 = \frac{g^2 C_{\rm F}}{4v}$$

•

Corresponding spectral function $(E' \equiv \omega - 2M \equiv Mv^2)$:

What happens below the threshold?

Perhaps there could be bound states?⁵

We are interested in rare processes where two dilute particles come together, i.e. $|\partial_t n| \sim e^{-2M/T}$. In a bound state they are "already" together, and with a less suppressed Boltzmann weight, because of a binding energy $\Delta E > 0$:

$$|\partial_t n_{\text{bound}}| \sim e^{-(2M - \Delta E)/T}$$

If $T \lesssim \Delta E$, this contribution dominates the co-annihilation rate.

⁵ e.g. B. von Harling and K. Petraki, *Bound-state formation for thermal relic dark* matter and unitarity, 1407.7874.

Formalism

Classic Boltzmann:

$$\left(\partial_t + 3H\right)n \approx -\langle \sigma v \rangle \left(n^2 - n_{eq}^2\right)$$
.

Problem: by construction n contains only scattering states.

Boltzmann boosted by on-shell bound states. Problem: How many? Thermal width? Melting?

General linearization:

$$(\partial_t + 3H) n = -\Gamma_{\text{chem}}(n - n_{\text{eq}}) + \mathcal{O}(n - n_{\text{eq}})^2$$

 $\Gamma_{
m chem}$ is a "transport coefficient", and n is the total density $(n \equiv e/M)$, including the contribution of bound states.⁶

⁶ D. Bödeker and ML, *Heavy quark chemical equilibration rate as a transport coefficient*, 1205.4987; *Sommerfeld effect in heavy quark chemical equilibration*, 1210.6153.

The rate Γ_{chem} can be addressed within NRQCD

Let θ , η annihilate DM and DM'. Like in the optical theorem, decays are contained in an imaginary part of a 4-particle operator:⁷

$$\Rightarrow \quad \mathcal{O} = \frac{ic_1 \alpha^2 \,\theta^\dagger \eta^\dagger \,\eta \theta}{M^2}$$

This yields
$$\Gamma_{\text{chem}} = \frac{8c_1\alpha^2}{M^2 n_{\text{eq}}} \frac{1}{\mathcal{Z}} \sum_{m,n} e^{-E_m/T} |\langle n|\eta\theta|m\rangle|^2.$$

⁷ G.T. Bodwin, E. Braaten and G.P. Lepage, *Rigorous QCD analysis of inclusive annihilation and production of heavy quarkonium*, hep-ph/9407339.

The thermal average can be resolved into a spectral fcn

$$\begin{split} \gamma &\equiv \frac{1}{\mathcal{Z}} \sum_{m,n} e^{-E_m/T} |\langle n|\eta\theta|m\rangle|^2 \,, \\ \rho(\omega) &\equiv \int_{-\infty}^{\infty} \mathrm{d}t \, e^{i\omega t} \left\langle \frac{1}{2} [(\eta\theta)(t), \, (\theta^{\dagger}\eta^{\dagger})(0)] \right\rangle_T \,. \\ &\vdots \\ \Rightarrow \quad \gamma &= \int_{2M-\Lambda}^{\infty} \frac{\mathrm{d}\omega}{\pi} \, e^{-\omega/T} \, \rho(\omega) \,+ \, \mathcal{O} \big(e^{-4M/T} \big) \,. \end{split}$$

Spectral fcn is a cut of a Green's function

$$\begin{bmatrix} H - i \Gamma(r) - E' \end{bmatrix} G(E'; \mathbf{r}, \mathbf{r}') = \delta^{(3)}(\mathbf{r} - \mathbf{r}') ,$$
$$\lim_{\mathbf{r}, \mathbf{r}' \to \mathbf{0}} \operatorname{Im} G(E'; \mathbf{r}, \mathbf{r}') = \rho(E') .$$

$$H = -\frac{\nabla_r^2}{M} + V(r) \; ,$$

$$E' \equiv \omega - 2M$$
.

V(r) and $\Gamma(r)$ emerge from gauge exchange

$$V(r) - i \Gamma(r) = g^2 \int \frac{\mathrm{d}^3 \mathbf{k}}{(2\pi)^3} \left(1 - e^{i\mathbf{k} \cdot \mathbf{r}} \right) i \Delta_{00\mathrm{T}}(0, k) \; .$$

The width represents real scatterings, present in a plasma:

The total rate γ can also be defined non-perturbatively

$$\bar{S}_1 \equiv \frac{\gamma}{\gamma_{\rm \, free}} \; .$$

Let G^{θ} be the imaginary-time propagator of a heavy quark in NRQCD, and $\beta \equiv 1/T$. Then it can be shown that

$$\bar{S}_{1} = \frac{\frac{1}{2N_{c}} \operatorname{Tr} \langle G^{\theta}(\beta; 0) G^{\theta^{\dagger}}(\beta; 0) \rangle}{\left\{ \frac{1}{2N_{c}} \operatorname{Re} \operatorname{Tr} \langle G^{\theta}(\beta; 0) \rangle \right\}^{2}}$$

This is a gauge-invariant and UV-finite observable that can be directly measured within the lattice NRQCD framework.

Test results for QCD

On the perturbative side, use a real-time static potential ⁸

⁸ ML, O. Philipsen, P. Romatschke and M. Tassler, *Real-time static potential in hot* QCD, hep-ph/0611300; A. Beraudo, J.-P. Blaizot and C. Ratti, *Real and imaginary-time* $Q\overline{Q}$ correlators in a thermal medium, 0712.4394; N. Brambilla, J. Ghiglieri, A. Vairo and P. Petreczky, *Static quark-antiquark pairs at finite temperature*, 0804.0993.

Thermal average \Rightarrow bound states dominate singlet decays

Lattice NRQCD confirms this on a qualitative level

First results for cosmology

Z exchange: no bound states are found

Thermal average $\int dE' e^{-E'/T} \dots \Rightarrow$ Sommerfeld works well.

Z' exchange:⁹ bound states melt below freeze-out

⁹ e.g. M. Pospelov, A. Ritz, M.B. Voloshin, *Secluded WIMP Dark Matter*, 0711.4866; W. Shepherd *et al*, *Bound states of weakly interacting dark matter*, 0901.2125.

Gluon exchange between gluinos:¹⁰ like in QCD

¹⁰ e.g. J. Ellis, F. Luo and K.A. Olive, *Gluino Coannihilation Revisited*, 1503.07142.

Summary

- With strong constraints from LHC and cosmology, there is a need to understand thermal corrections to dark matter freeze-out.
- Weak interactions: Sommerfeld effect seems to be sufficient.
- Strong interactions: the co-annihilation rate is much enhanced because of bound states. This may help to avoid overclosure.