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1.1 Jets in proton-proton collisions

a dijet event recorded by ATLAS at the LHC
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1.1 Jets in proton-proton collisions

partons in a hard scattering process
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1.1 Jets in proton-proton collisions

jet evolution in vacuum
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1.2 Jets in nucleus-nucleus collisions

an asymmetric dijet event in a PbPb collision

ATLAS, Phys. Rev. Lett. 105, 252303 (2010).
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1.2 Jets in nucleus-nucleus collisions

compare to a proton-proton collision
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1.2 Jets in nucleus-nucleus collisions

partons in a hard scattering process
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1.2 Jets in nucleus-nucleus collisions

underlying event → bulk QCD matter
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1.2 Jets in nucleus-nucleus collisions

jet evolution in bulk QCD matter
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1.2 Jets in nucleus-nucleus collisions

Bulk matter in central PbPb collisions

• Particles produced

≈ 25,000 at
√
sNN = 2.76 TeV

• Thermalization

Talks by Venugopalan & Kurkela.

Idealization

a quark-gluon plasma (QGP) with temperature T
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1.3 Jets in QCD matter

Aim of this talk: the entire evolution of a jet in a QGP

What does this figure mean?
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1.3 Jets in QCD matter

What is the fate of a parton in a QGP?

Properties of a hot QGP

m2
D ∼ αsT

2, σ ∼ α2
s

m2
D
, λ = 1

ρσ
∼ 1

αsT
.

Arnold, Moore & Yaffe (2003).
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1.3 Jets in QCD matter

1. Multiple scattering:

dN
d2p⊥

= 1
πq̂t

e−
p2
⊥
q̂t ⇒ 〈p2

⊥〉 = q̂t

Here, q̂ is called jet quenching parameter.
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1.3 Jets in QCD matter

2. Gluon radiation

radiation occurs within the formation time

tf = 2ω
k2
⊥
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1.3 Jets in QCD matter

Topics of this talk

1. Fully-overlapping emission: radiative correction to q̂

2. Independent emission: multiple branching & thermalization
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2 Radiative correction to q̂

p⊥-broadening: diffusion + the recoil of gluon radiation

Liou, Mueller and BW (2013); BW (2011, 2014).
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2 Radiative correction to q̂

Setup the problem: calculate typical 〈p2
⊥〉

dN
d2p⊥

= 1
π〈p2
⊥〉
e
− p2
⊥
〈p2
⊥〉 with 〈p2

⊥〉 = q̂t

Multiple soft scatterings (mD � E)
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2 Radiative correction to q̂

Setup the problem: calculate typical 〈p2
⊥〉

dN
d2p⊥

= 1
π〈p2
⊥〉
e
− p2
⊥
〈p2
⊥〉 with 〈p2

⊥〉 = q̂t

What is the contribution from recoil of gluon radiation?
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2 Radiative correction to q̂

Missing effect #1: (rare) single hard scattering

dN
d2p⊥

≈ t
λ

1
σ

dσ
d2p⊥

∝ p−4
⊥ for p2

⊥ & q̂t

Does single scattering play any important role?
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2 Radiative correction to q̂

Single scattering of the coherent pair within tf

• kinematic region (tf = 2ω
k2
⊥

)

k2
⊥ & q̂tf
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2 Radiative correction to q̂

Single scattering of the coherent pair within tf

Soft & collinear divergences

〈p2
⊥〉 = αq̂L

∫
dω

ω︸ ︷︷ ︸
soft

∫
dk2
⊥

k2
⊥︸ ︷︷ ︸

collinear

with α ≡ αsNc

π
.
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2 Radiative correction to q̂

Single scattering of the coherent pair within tf

Double logarithmic enhanced contribution

〈p2
⊥〉rad = αq̂L

∫ L

l0

dtf
tf

∫ q̂L

q̂z

dk2
⊥

k2
⊥

= α
2
q̂L ln2 L

l0
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2 Radiative correction to q̂

Leading log resummation: arbitrary n-gluon emission

〈p2
⊥〉tot ≈ q̂L

∞∑
n=0

(α ln2 L
l0

)n

(n+1)!n! = q̂L
I1(2

√
α ln L

l0
)

(
√
α ln L

l0
)

The lead log result of average energy loss

∆Etot ≈ αsNc

12 〈p
2
⊥〉totL
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2 Radiative correction to q̂

In summary

dN
d2p⊥

= 1
π〈p2
⊥〉tot

e
− p2

⊥
〈p2
⊥〉tot with 〈p2

⊥〉tot ≈ q̂L
[

1 + αsNc

2π
ln2 L

l0

]
Physical interpretation: renormalized q̂

q̂ → q̂tot =
〈p2
⊥〉tot
L

One gluon spectrum shall be modified accordingly.

Blaizot & Mehtar-Tani (2014); Iancu (2014).
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2 Radiative correction to q̂

Further discussions

• Running coupling effects: see also Iancu & Triantafyllopoulos (2014)

q̂tot ≈ q̂

[
1 +

αs(Q
2
s )Nc

π
ln2 L

l0

]
with Q2

s ≡ q̂L.

• Interplay with vacuum double log: Mueller, BW, Xiao & Yuan (2016)

• Partially overlapping emission: Arnold, Chang & Iqbal (2015-2016)
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3 Multiple branching and thermalization

Jet evolution: a game of diffusion, drag and branching

Focus on distribution in the longitudinal phase space!

Iancu and BW (2015).
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3.1 Diffusion and drag

Missing effect # 2: drag

• The ”drag” time: time for a gluon with momentum p to stop

tdrag(p) ≡ p
T
trel with the relaxation time trel = 4T 2

q̂
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3.1 Diffusion and drag

What happens to a gluon initially with p = T?

• at t = 0

f = δ(z)δ(p − T )

• at t > trel = tdrag

f ' e−
|p|
T

2︸ ︷︷ ︸
thermal

e−
(z−trel)2

4t

2
√
πt/trel︸ ︷︷ ︸

diffusion in space

It relaxes into local thermal equilibrium within ∼ trel.
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3.2 Branching

The Landau-Pomeranchuk-Migdal (LPM) effect

Formation time:

tf (ω) = 2ω
k2
⊥
' ω

q̂tf

⇔
tf '

√
ω
q̂

The branching time: tbr(ω) ≡ tf (ω)
α
' 1

α

√
ω
q̂

Probability for emitting a gluon with energy ω within t

P(ω, t) ∼ t
tbr(ω)

' α
√

ωt2

q̂

Baier, Dokshitzer, Mueller, Peigne & Schiff & Zakharov (1996-1998).
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3.2 Branching

Most probable radiation pattern within ∆t

Radiated gluon with ∼ ωbr(∆t) ≡ α2q̂∆t2

probability ∼ ∆t/tbr(ωbr) ∼ 1

Baier, Dokshitzer, Mueller & Schiff (2001).
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3.2 Branching

Most probable radiation pattern within ∆t

Radiated gluon with ∼ ωbr(∆t) ≡ α2q̂∆t2

probability ∼ ∆t/tbr(ωbr) ∼ 1
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3.2 Branching

Most probable radiation pattern within ∆t

⇒Typical energy loss ∼ ωbr(∆t) ≡ α2q̂∆t2

Baier, Dokshitzer, Mueller & Schiff (2001).
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3.2 Branching

Most probable radiation pattern within ∆t

⇒Typical energy loss ∼ ωbr(∆t) ≡ α2q̂∆t2

Blaizot, Iancu & Mehtar-Tani (2013); Fister & Iancu (2015).

Bin Wu 24/ 34 Jet evolution



3.4 At t < tbr(E )

Thermalization of mini-jets with ω . ωbr(t) < E

Gluons with ω ∼ T are radiated and thermalized within ∼ trel.
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3.4 At t < tbr(E )

Thermalization of mini-jets with ω . ωbr(t) < E

Within t, a mini-jet (a gluon with ω ∼ ωbr(t)) is emitted.
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3.4 At t < tbr(E )

Thermalization of mini-jets with ω . ωbr(t) < E

The mini-jet branches into soft gluons with ω ∼ T within ∼ t.
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3.4 At t < tbr(E )

Categorization of gluons:

non-thermal front with leading particle and thermal tail
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3.4 At t < tbr(E )

The distribution f at t = 0.3tbr(E ) with E = 90 T
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3.4 At t < tbr(E )

Leading particle peak at z = t

 0.01

 0.1

 1

 1  10

p3/
2 f

/T
3/

2

p/T

E=90 T
tbr(E) = 9.5 trel

t = 0.02 tbr(E)

t = 0.1 tbr(E)

t = 0.5 tbr(E)

t = tbr(E)

Scaling behavior f ∝ p−
3
2 exists at z ' t . 0.5tbr(E )

See also: Mueller, Schiff & Son (2001); Blaizot, Iancu & Mehtar-Tani (2013);

Kurkela & Lu (2014).
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3.4 At t < tbr(E )

What happens to the mini-jet afterwards?

All its branching products thermalize at z ∼ tbr(ω).
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3.5 At t ' tbr(E )

The gluon itself is a mini-jet:

non-thermal front and thermal tail.
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3.5 At t ' tbr(E )

Most gluons with p ∼ T : non-thermal front + thermal tail
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3.6 At t ' tbr(E )

Most gluons with p ∼ T : non-thermal front + thermal tail
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3.6 At t > tbr(E )

The jet itself is a fully quenched mini-jet.
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3.6 At t > tbr(E )

The jet itself is a fully quenched mini-jet.
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Summary

Radiative correction to q̂

q̂tot ≈ q̂
∞∑
n=0

(α ln2 L
l0

)n

(n+1)!n!

q̂tot ≈ 1.8q̂ for αs = 1/3, L = 5 fm & 1/l0 = 0.3 GeV.
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1.3 Jets in QCD matter

Aim of this talk: the entire evolution of a jet in a QGP

What does this figure mean?
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Summary

The leading jet

path length L� tbr(E ) ≡ 1
α

√
E/q̂
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Summary

The missing recoiling jet

path length L ' tbr(E ) ≡ 1
α

√
E/q̂
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