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Introduction

•  All measurements (Higgs properties & others) in LHC based 
formulation of the likelihood


•  Hypothesis is usually "

"
“some (B)SM physics model” (x) Soft physics model (x) ATLAS 
detector description (x) ATLAS analysis reconstruction” "
"
that can predict the distribution of some quantity x that we can 
reconstruct for each event.

•  Hypothesis cannot be analytically formulated, but follows from chain 
of MC simulation processes
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Introduction – Formulating the likelihood

•  All steps of the process depends on parameters wholes values are 
unknown. These can be either ‘of interest’ (Higgs properties), or ‘a 
nuisance’ (unknown calibrations, QCD scales etc…)

•  Hypothesis that we’re testing is therefore a composite hypothesis 

•  If we would have a continuous description of L for each value of the 
unknown parameters μ,θ we can use our well-known of of statistical 
tools to make inference on the parameters μ
–  E.g. construct profile likelihood ratio "

to make (asymptotic) confidence intervals

•  Main problem – we don’t have such a continuous"
can only calculate L(x) separately for any point (μ,θ)  Wouter Verkerke, NIKHEF 4
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Introduction

•  Can approximate statistical procedure with ‘grid scan’ of Likelihood 
points calculated for individual values of parameters, but quickly 
gets hard

•  Would rather have some procedure to turn such a grid scan into a 
continuous distribution so that usual tools (MINUIT) can be used"
for statistical procedures
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Morphing = procedure to turn collection of 
                  probability models 
                  for individual points in parameter space  
 
                  La=0(x) La=-1(x) La=+1(x) 
 
                  into a continuous function 
 
                  L(x|a) 



Need to interpolate between template models

•  Need to define ‘morphing’ algorithm to define "
distribution s(x) for each value of α

Wouter Verkerke, NIKHEF
s(x,α=-1) 

s(x,α=0) 

s(x,α=+1) 
s(x)|α=-1 

s(x)|α=0 

s(x)|α=+1 
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Piecewise linear interpolation

•  Simplest solution is piece-wise linear interpolation for each bin

Wouter Verkerke, NIKHEF

Piecewise linear"
interpolation"
response model"
for a one bin

Extrapolation to |α|>1

Kink at α=0

Ensure si(α)≥0
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Visualization of bin-by-bin linear interpolation of distribution

Wouter Verkerke, NIKHEF

xα

9



Limitations of piece-wise linear interpolation

•  Bin-by-bin interpolation looks spectacularly easy and simple, "
but be aware of its limitations
–  Same example, but with larger ‘mean shift’ between templates

Wouter Verkerke, NIKHEF

Note double peak structure around |α|=0.5

10

Doesn’t work for all shape changes in distributions 
 
May need more sophisticated interpolation algorithms 
à will show solutions later



Morphing for systematic uncertainties vs signal parameters

•  Use of morphing techniques for systematic uncertainties very 
common in LHC (typically referred to as ‘profile likelihood’)

•  Morphing less extensively used in (Higgs) signal modeling in Run-1: 
when measuring signal strengths, simple scaling of signal template 
suffices to model all possible signal strengths. 
–  Also e.g. true in k-framework for measuring Higgs couplings – only modification of 

signal strengths are considered in each channel

•  But many types of measurements exist where signal rate and 
distributions change in non-trivial ways depending on theory 
parameters, e.g. Higgs CP parameters measured in Run-1.

•  Also for signal morphing techniques can be used to construct 
continuous probability model for signal parameters, interpolated 
between a finite number of distributions obtain from the simulation 
chain.

Wouter Verkerke, NIKHEF
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Parameterizing shapes changes in signal distributions

•  For shape changes due to systematic uncertainties (nuisance 
parameters) ‘vertical interpolation’ is mostly used

•  But procedure is ad-hoc and has limitations à Dubious to use this 
for modeling of signal shape changes related to physics parameters 
of interest.

•  Can we do better? Wouter Verkerke, NIKHEF
12 



Improved strategy for interpolation – moment morphing

•  Key deficiency of vertical interpolation"
is that it doesn’t account well for "
shifting distributions"
"
Tout(x|α) = α*Tlow(x)+(1-α)*Thigh(x) "


•  Alternative strategy is"
 “moment morphing”

•  Basic idea is the same, but adjust "
mean, r.m.s of Tlow(x),Thigh(x) "
through transformation xàx’ "
function of α so that mean, "
r.m.s. of components T(x’) match "
for any α

Wouter Verkerke, NIKHEF
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Yet another morphing strategy – ‘Moment morphing’

•  For a Gaussian probability model with linearly "
changing mean and width, moment morphing "
of two Gaussian templates is the exact solution

•  But also works well on ‘difficult’ distributions,"
although interpolation strategy still largely"
empirical (i.e does not reflect underlying physics principle)


•  Good computational performance

–  Calculation of moments of templates is expensive,"
but just needs to be done once, otherwise very fast (just linear algebra)

•   Multi-dimensional interpolation strategies exist
•  Moment morphing used for signal interpolation for Run-1 ATLAS CP analysis  

Wouter Verkerke, NIKHEF
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Example signal morphing Results – ATLAS CP constraints

•  Individual & combined results of HàWW & HàZZ channels

Wouter Verkerke, NIKHEF
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Can we do even better for signal morphing

•  While moment morphing already does a better job than vertical 
interpolation, procedure is empirical and not tied to underlying 
physics.

•  For signal parameters that are spelled out in Lagrangian of a physics 
model, can construct an interpolation procedure that is based on 
the underlying physics à ‘Effective Lagrangian Morphing’ 

•  Consider first simplest scenario with 1 non-SM coupling in 
production only (or decay only) à Two parameters gSM, gBSM that 
affect ME

Wouter Verkerke, NIKHEF

ATL-PHYS-PUB-2015-047!
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EFT morphing approach

•  Number of input distributions needed = number of terms in M2 "
"
"
"
For this simplest case need 3 templates, e.g. 

•  Then observable distributions for |M|2 for any value of gSM,gBSM is"
"
"


•  Interpolation accurate for all values of gSM,gBSM, in limit that |M|"
is described by formula above  Wouter Verkerke, NIKHEF
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EFT morphing approach

Wouter Verkerke, NIKHEF
Note that this is effectively ‘vertical interpolation’ morphing – but with specific choice of sampling points! 18 



Choosing sampling points at arbitrary locations

•  No need to choose input samples in ‘pure’ of fully-mixed 
configurations only  (i.e. [1,0], [0,1], [1,1])

•  Can solve equations for morphing expression from any sufficient 
number of samples (3 in this example) with different admixtures

•  Coefficients aii appearing in general expression can be solved"
from conditions that Tout=Tin for g=gtarget.  In matrix form:  

Wouter Verkerke, NIKHEF
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Illustration of EFT morphing

•  Example of morphing of 1D observable distribution with 2 theory 
parameters

Wouter Verkerke, NIKHEF
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Morphing example : ggF à HàZZ

•  Scenario with 1 SM and 1 BSM amplitude affecting decay vertex 
only

Wouter Verkerke, NIKHEF
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Wouter Verkerke, NIKHEF

Scenario with 
1 SM + 1 BSM amplitude 
affecting decay vertex 

Morphing example : ggF à HàZZ
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EFT morphing – non-SM couplings in production & decay

•  What happens if both prod. & decay vertices depend on gSM, gBSM
–  Assuming Narrow Width approximation

Wouter Verkerke, NIKHEF

Now need 5 distribution templates instead of 3, #
but otherwise fundamentally not more complicated 
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EFT morphing – adding parameters 

•  Morphing method can be generalized to have >2 parameters


•  But number of terms in expression (and thus number of input 

distributions) grows rapidly with number of theory parameters 

Wouter Verkerke, NIKHEF

np = #params in prod only
nd = #params in decay only
ns = #params in prod&decay

Nsamples =
1
24
s s+1( ) s+ 2( ) s+3( )+ 4 p+ d( )⎡⎣ ⎤⎦+

+
1
4
s s+1( ) p(p+1)+ s(s+1)d(d +1)+ p(p+1)d(d +1)⎡⎣ ⎤⎦++

1
2
pds(p+ d + s+3)
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Ambitions for LHC run-2

•  Case study: can we practically describe experimental observable 
distributions as function of the 15 parameters of the full Higgs 
Characterization Framework L for Higgs-V interactions 

Wouter Verkerke, NIKHEF

Fermions… 
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Morphing example 2: VBH à H à WW

Wouter Verkerke, NIKHEF

kSM 
kHWW 
kAWW 

3 shared parameters "
à 15 terms in |M|2 expression "
à 15 input distributions needed Tout(kSM,kHWW,kAWW) = Σ wi(kSM,kHWW,kAWW) * Tin,i

Template histograms
Template weights (polynomials in ki)
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A concrete example VBH à H à WW

Wouter Verkerke, NIKHEF

kSM 
kHWW 
kAWW 

3 shared parameters "
à 15 terms in |M|2 expression "
à 15 input distributions needed Tout(kSM,kHWW,kAWW) = Σ wi(kSM,kHWW,kAWW) * Tin,i

Template histograms
Template weights (polynomials in ki)

 Reminder: modeling of VBHàHàWW in k-framework"


 Tout = (0.74KW
2+0.26kZ

2) * KW
2 * Tin"

"
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Truth-level validation study on simulation samples

•  Procedure
–  VBF H→WW process with SM (gSM) and 2 BSM operators (gHWW, gAWW) "

50k events generated. Kinematic observable used: ∆φjj, Only signal considered
–  15 samples with different parameter settings used to construct EFT morphing model

Wouter Verkerke, NIKHEF
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Truth-level validation study on simulation samples

•  Procedure
–  VBF H→WW process with SM (gSM) and 2 BSM operators (gHWW, gAWW) "
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Wouter Verkerke, NIKHEF
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A more ambitious example: VBF vertex using full HCF

•  Implement complete VBF vertex of Higgs Characterization Lagrangian"


•  13 parameters à 91 terms in |M|2 à 91 input distributions needed"
"
"
Generator level, signal only samples used with 30k events each Setup fit 
to SM input sample. Observables: ∆φjj , pT

j1  , mjj , ∆ηjj 
Wouter Verkerke, NIKHEF

Tout(kSM,kHWW,kAWW) = Σ wi(kSM,kHWW,kAWW) * Tin,i
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A more ambitious example: VBF vertex using full HCF

•  Example of shape changes in distributions due to kHWW

Wouter Verkerke, NIKHEF
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Sensivity to 13 parameters of VBF vertex

•  Construct simple binned likelihood to combine information of the 4 
observables

Wouter Verkerke, NIKHEF

Fit to pseudo-data sample#
with 8% cross-section uncertainty 
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Generality of the method

•  Morphing only requires that any differential cross section can be 
expressed as polynomial in BSM couplings

•  Method can be used on any generator that allows one to vary input 
couplings 

•  Works on truth and reco-level distributions
•  Independent of physics process

•  Works on distributions and cross sections 

Wouter Verkerke, NIKHEF
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Effective Lagrangian Morphing - open issues, points of attention

•  Effective Lagrangian Morphing is still in development "
Likelihood modeling effort with ELM a lot more ambitious than 
implementing k-framework, thus several open issues, points of 
attention

1.  Getting a reasonable MC statistical uncertainty on prediction "
everywhere in the used parameter space

2.  Numerical stability of computations as number of parameters and 
samples grow

3.  Not all degrees of freedom can be measured well à choosing a 
good basis for the signal parameter degrees of freedom you’re 
interested in."


•  Recommendations for ELM will continue to evolve 
Wouter Verkerke, NIKHEF
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MC statistical uncertainty on model predictions

•  Morphing model prediction is weighted sum of templates.
•  Need to take care that relevant regions of parameters do not end up 

being modeled by low-statistics samples with large scale factors.
•  Need to choose sampling points in parameter space intelligently

Wouter Verkerke, NIKHEF
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MC statistical uncertainty on model predictions

•  Another example: VBF Higgs with 1 SM & 1 BSM coupling "
Sample distribution S(1, -2), S(1, -1), S(1, 0), S(1, 1), S (0, 1).!

Wouter Verkerke, NIKHEF

sum of  
template events 

coefficient-weighted sum of  
template events 

ratio sum/weighed sum 

sample weights vs gBSM S(1, -2) 

S(1, -1) 

S(1, 0) 

S(1, 1) 

S(0, 1) 
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Issues on basis choice

•  Choosing the basis (collection of input samples) for a morphing 
problem is a potentially hard problem involving tradeoffs.
–  Putting samples close expected region of results promotes maximum precision in 

this region, but may strongly inflate morphing template uncertainties when 
measured parameters are far outside region

–  A wider spread of sampling points will ensure a more uniform statistical precision 
over the parameter space, at the expense of best precision in the region of interest

–  Generally, numeric feasibility becomes harder as #samples increase (What 
happens if you have >>1000 samples?)

–  Practical extent of issue still under study as no full chain physics  analysis has been 
done yet. 

•  Nevertheless several ideas & tests are under development
–  Condition Numbers as predictor of stability
–  Dynamical morphing  (basis varies as function of location in parameter space)

Wouter Verkerke, NIKHEF
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Numerical stability as number of samples grows

•  Condition that morphing model evaluates to each input template at 
appropriate point in parameter space leads to a set of constraints in 
matrix form

•  Matrix G must have det(G)≠0 clearly for inversion to succeed, but 
also close-to singular form may lead to numerical difficulties

Wouter Verkerke, NIKHEF
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Numerical stability as number of samples grows

•  But if G is close to singular, then weights wi of template morphing 
expression will react very strongly to minute changes in parameters g


•  Can estimate the amplification effect δg à δw with the condition 

number of the matrix A = G-1

Wouter Verkerke, NIKHEF

|| x − x ' ||
|| x ||

≤ cond(A) || b− b ' ||
|| b ||

cond(A) =|| A ||1 • || A
−1 ||1 || A ||1=max1≤ j≤n | aij |

i=1

n

∑
10-log of condition number indicative of number of significant digits lost#
when numerically solving equations for weights
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Ideas for improving statistical precision

•  Can generate more samples than needed for basis, e.g. with both 
dense and sparse sampling. Then choose a posteriori set of 
samples for local basis with best stat uncertainty à ‘Dynamical 
morphing’

Wouter Verkerke, NIKHEF

Outline of idea

1.  Add templates at additional "

sampling points (shown in black)"
in region of interest ~(0,0)


2.  Redundancy in sampling points"

allow to choose multiple subsets"
to construct morphing model


3.  Choose combination of samples"

that result in lowest condition"
number 

40 



Dynamical morphing

•  Inclusion of dense grid (block) in additional to sparse points (blue), 
improve performance of morphing stat uncertainty w.r.t sparse-
points only in the ‘dense region’ (as expected)

Wouter Verkerke, NIKHEF

Neff/Ntot Using only blue 
samples as basis 

Using dynamic ‘best’  
combination of blue  
and black point points as basis  

Using only blue point samples #
as basis would give ~flat Neff=0.30 #
(no plot available)
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Using & integrating novel morphing tools - practicalities

•  Most Higgs models built nowadays in HistFactory – supports for 
now only vertical interpolation natively (RooFit class 
PiecewiseInterpolation)"
"
"
"
"
"
"
"


•  Novel morphing classes can be integrated in HistFactory models"
either by a-posteriori replacement operations (Workspace EDIT 
operator), or by extension of HistFactory code to be aware of novel 
types of morphing techniques
–  A posteriori replacement technique already used in Run-1 (e.g to insert Moment 

Morphing classes in HistFactory models)
–  Expect also progress here (both in code updates and hands-on tutorials)

Wouter Verkerke, NIKHEF

bkg 

sig 

Full pdf Morphing function Input templates 
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Using & integrating novel morphing tools - practicalities

•  Focus of todays workshop is a software tutorial on RooFit class 
RooEFTMorphFunc, as functional replacement of 
PiecewiseInterpolation for (Higgs) signal"
morphing 
–  Mostly focus on configuring getting example RooEFTMorphFunc"

class properly configured and working (complexities due to many more samples, 
parameters than in vertical morphing)

–  Some extra tutorial (for those that are fast) on how to generate "
input samples (since closely tied to morphing pdf definition) to be able to explore 
other configurations

•  Still many items uncovered today à There will be a 2nd workshop in 
few weeks

•  Tentative agenda items for 2nd workshop
–  Other implementations of morphing functions, with inclusion of dynamical 

morphing, integration of morphing functions into workspaces
–  More information on generating samples
–  Discussion of basis choices  

Wouter Verkerke, NIKHEF
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