Introduction to morphing

Wouter Verkerke – Nikhef

With input from

L. Brenner, A. Kaluza, K. Ecker, C. Burgard, K. Prokofiev, V. Bortolotto, R. Konoplich, N. Belyaev

Wouter Verkerke, NIKHEF

Introduction

• All measurements (Higgs properties & others) in LHC based formulation of the likelihood

$$L(\vec{x} \mid \vec{\mu}, \vec{\theta})$$

Probability of the observed data (x) under a particular hypothesis

• Hypothesis is usually

"some (B)SM physics model" (x) Soft physics model (x) ATLAS detector description (x) ATLAS analysis reconstruction"

that can predict the distribution of some quantity x that we can reconstruct for each event.

 Hypothesis cannot be analytically formulated, but follows from chain of MC simulation processes

An overview of HEP data analysis procedures

Introduction – Formulating the likelihood

- All steps of the process depends on parameters wholes values are unknown. These can be either 'of interest' (Higgs properties), or 'a nuisance' (unknown calibrations, QCD scales etc...)
- Hypothesis that we're testing is therefore a composite hypothesis

$L(\vec{x} \,|\, \vec{\mu}, \vec{\theta})$

- If we would have a continuous description of L for each value of the unknown parameters μ,θ we can use our well-known of of statistical tools to make inference on the parameters μ
 - E.g. construct profile likelihood ratio to make (asymptotic) confidence intervals

 $\lambda(\mu) = \frac{L(\mu, \hat{\hat{\theta}}(\mu))}{L(\hat{\mu}, \hat{\theta})}$

• Main problem – we don't have such a continuous $L(\vec{x} \mid \vec{\mu}, \theta)$ can only calculate L(x) separately for any point (μ, θ) Wouter Verkerke, NIKHEF 4

Introduction

• Can approximate statistical procedure with 'grid scan' of Likelihood points calculated for individual values of parameters, but quickly gets hard

 Would rather have some procedure to turn such a grid scan into a continuous distribution so that usual tools (MINUIT) can be used for statistical procedures

$$\begin{split} L(R,I,\vec{\theta}) &= S(x \mid R,I,\vec{\theta}) + B(x \mid \vec{\theta}) \\ & \checkmark \\ & = Morph(R,I,S_{ij}(x \mid \tilde{R}_i,\tilde{I}_j,\vec{\theta})) + B(x \mid \vec{\theta}) \end{split}$$

Introduction

 Can approximate statistical procedure with 'grid scan' of Likelihood points calculated for individual values of parameters, but quickly gets hard

Need to interpolate between template models

Piecewise linear interpolation

• Simplest solution is piece-wise linear interpolation for each bin

Visualization of bin-by-bin linear interpolation of distribution

Limitations of piece-wise linear interpolation

- Bin-by-bin interpolation looks spectacularly easy and simple, but be aware of its limitations
 - Same example, but with larger 'mean shift' between templates

Note double peak structure around $|\alpha|=0.5$

Morphing for systematic uncertainties vs signal parameters

- Use of morphing techniques for systematic uncertainties very common in LHC (typically referred to as 'profile likelihood')
- Morphing less extensively used in (Higgs) signal modeling in Run-1: when measuring signal strengths, simple scaling of signal template suffices to model all possible signal strengths.
 - Also e.g. true in k-framework for measuring Higgs couplings only modification of signal strengths are considered in each channel
- But many types of measurements exist where signal rate and distributions change in non-trivial ways depending on theory parameters, e.g. Higgs CP parameters measured in Run-1.
- Also for signal morphing techniques can be used to construct continuous probability model for signal parameters, interpolated between a finite number of distributions obtain from the simulation chain.

Parameterizing shapes changes in signal distributions

• For shape changes due to systematic uncertainties (nuisance parameters) 'vertical interpolation' is mostly used

- But procedure is ad-hoc and has limitations → Dubious to use this for modeling of signal shape changes related to physics parameters of interest.
- Can we do better?

Improved strategy for interpolation – moment morphing

• Key deficiency of vertical interpolation is that it doesn't account well for shifting distributions

 $T_{out}(x|\alpha) = \alpha^{*}T_{low}(x) + (1-\alpha)^{*}T_{high}(x)$

- Alternative strategy is "moment morphing"
- Basic idea is the same, but adjust mean, r.m.s of T_{low}(x), T_{high}(x) through transformation x→x' function of α so that mean, r.m.s. of components T(x') match for any α

<section-header><section-header><list-item><list-item><list-item><section-header>

morphing parameter

Yet another morphing strategy - 'Moment morphing'

- For a Gaussian probability model with linearly changing mean and width, moment morphing of two Gaussian templates is the exact solution
- But also works well on 'difficult' distributions, although interpolation strategy still largely empirical (i.e does not reflect underlying physics principle)

- Calculation of moments of templates is expensive, but just needs to be done once, otherwise very fast (just linear algebra)
- Multi-dimensional interpolation strategies exist
- Moment morphing used for signal interpolation for Run-1 ATLAS CP analysis

Example signal morphing Results – ATLAS CP constraints

• Individual & combined results of $H \rightarrow WW \& H \rightarrow ZZ$ channels

15

Can we do even better for signal morphing

- While moment morphing already does a better job than vertical interpolation, procedure is empirical and not tied to underlying physics.
- For signal parameters that are spelled out in Lagrangian of a physics model, can construct an interpolation procedure that is based on the underlying physics → 'Effective Lagrangian Morphing'
- Consider first simplest scenario with 1 non-SM coupling in production only (or decay only) → Two parameters g_{SM}, g_{BSM} that affect ME

$$T(g_{\text{SM}}, g_{\text{BSM}}) \propto |\mathcal{M}(g_{\text{SM}}, g_{\text{BSM}})|^2$$

 $\mathcal{M}(g_{\text{SM}}, g_{\text{BSM}}) = g_{\text{SM}}O_{\text{SM}} + g_{\text{BSM}}O_{\text{BSM}}$ ATL-PHYS-PUB-2015-047 $|\mathcal{M}(g_{\text{SM}}, g_{\text{BSM}})|^2 = g_{\text{SM}}^2 |O_{\text{SM}}|^2 + g_{\text{BSM}}^2 |O_{\text{BSM}}|^2 + 2g_{\text{SM}}g_{\text{BSM}}\mathcal{R}(O_{\text{SM}}^*O_{\text{BSM}})$

EFT morphing approach

• Number of input distributions needed = number of terms in M^2

$$|\mathcal{M}(g_{\text{SM}}, g_{\text{BSM}})|^2 = g_{\text{SM}}^2 |O_{\text{SM}}|^2 + g_{\text{BSM}}^2 |O_{\text{BSM}}|^2 + 2g_{\text{SM}}g_{\text{BSM}}\mathcal{R}(O_{\text{SM}}^*O_{\text{BSM}})$$

For this simplest case need 3 templates, e.g.

$$\begin{aligned} & T_{in}(1,0) \propto |O_{\rm SM}|^2 \\ & T_{in}(0,1) \propto |O_{\rm BSM}|^2 \\ & T_{in}(1,1) \propto |O_{\rm SM}|^2 + |O_{\rm BSM}|^2 + 2\mathcal{R}(O_{\rm SM}^*O_{\rm BSM}) \end{aligned}$$

• Then observable distributions for $|M|^2$ for any value of g_{SM}, g_{BSM} is

$$T_{out}(g_{\rm SM}, g_{\rm BSM}) = \underbrace{(g_{\rm SM}^2 - g_{\rm SM}g_{\rm BSM})}_{T_{in}(1,0)} + \underbrace{(g_{\rm BSM}^2 - g_{\rm SM}g_{\rm BSM})}_{T_{in}(0,1)} T_{in}(0,1) + \underbrace{g_{\rm SM}g_{\rm BSM}}_{T_{in}(1,1)} T_{in}(1,1)$$

 Interpolation accurate for all values of g_{SM},g_{BSM}, in limit that |M| is described by formula above
 Wouter Verkerke, NIKHEF

Note that this is effectively 'vertical interpolation' morphing – but with specific choice of sampling points 18

Choosing sampling points at arbitrary locations

- No need to choose input samples in 'pure' of fully-mixed configurations only (i.e. [1,0], [0,1], [1,1])
- Can solve equations for morphing expression from any sufficient number of samples (3 in this example) with different admixtures

$$T_{out}(g_{SM}, g_{BSM}) = \underbrace{(a_{11}g_{SM}^{2} + a_{12}g_{BSM}^{2} + a_{13}g_{SM}g_{BSM})}_{W_{1}} T_{in}(g_{SM,1}, g_{BSM,1})$$

$$+ \underbrace{(a_{21}g_{SM}^{2} + a_{22}g_{BSM}^{2} + a_{23}g_{SM}g_{BSM})}_{W_{2}} T_{in}(g_{SM,2}, g_{BSM,2})$$

$$+ \underbrace{(a_{31}g_{SM}^{2} + a_{32}g_{BSM}^{2} + a_{33}g_{SM}g_{BSM})}_{W_{3}} T_{in}(g_{SM,3}, g_{BSM,3})$$

 Coefficients a_{ii} appearing in general expression can be solved from conditions that T_{out}=T_{in} for g=g_{target}. In matrix form:

$$\begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{pmatrix} \cdot \begin{pmatrix} g_{\text{SM},1}^2 & g_{\text{SM},2}^2 & g_{\text{SM},3}^2 \\ g_{\text{BSM},1}^2 & g_{\text{BSM},2}^2 & g_{\text{BSM},3}^2 \\ g_{\text{SM},1}g_{\text{BSM},1} & g_{\text{SM},2}g_{\text{BSM},2} & g_{\text{SM},3}g_{\text{BSM},3} \end{pmatrix} = \mathbb{1}$$

$$\Leftrightarrow \quad A \cdot G = \mathbb{1}$$

$$\text{Definite solution } A = G^{-1}$$

$$\text{Wouter solution } A = G^{-1}$$

[.] Verkerke, NIKHEF

Illustration of EFT morphing

Example of morphing of 1D observable distribution with 2 theory parameters

Morphing example : $ggF \rightarrow H \rightarrow ZZ$

 Scenario with 1 SM and 1 BSM amplitude affecting decay vertex only

Morphing example : $ggF \rightarrow H \rightarrow ZZ$

EFT morphing – non-SM couplings in production & decay

- What happens if both prod. & decay vertices depend on g_{SM.} g_{BSM}
 - Assuming Narrow Width approximation

 $\mathcal{M}(g_{\rm SM}, g_{\rm BSM}) = \left(g_{\rm SM} \cdot O_{\rm SM,p} + g_{\rm BSM} \cdot O_{\rm BSM,p}\right) \cdot \left(g_{\rm SM} \cdot O_{\rm SM,d} + g_{\rm BSM} \cdot O_{\rm BSM,d}\right).$ $|\mathcal{M}(g_{\rm SM}, g_{\rm BSM})|^2 = \left(g_{\rm SM}O_{\rm SM,p} + g_{\rm BSM}O_{\rm BSM,p}\right)^2 \cdot \left(g_{\rm SM}O_{\rm SM,d} + g_{\rm BSM}O_{\rm BSM,d}\right)^2$ $= g_{\rm SM}^4 \cdot O_{\rm SM,p}^2 O_{\rm SM,d}^2 + g_{\rm BSM}^4 \cdot O_{\rm BSM,p}^2 O_{\rm BSM,d}^2$ $+ g_{\rm SM}^3 g_{\rm BSM} \cdot \left(O_{\rm SM,p}^2 \Re(O_{\rm SM,d}^* O_{\rm BSM,d}) + \Re(O_{\rm SM,p}^* O_{\rm BSM,p})O_{\rm SM,d}^2\right)$ $+ g_{\rm SM}^2 g_{\rm BSM}^2 \cdot \left(O_{\rm SM,p}^2 O_{\rm BSM,d}^2 + O_{\rm BSM,p}^2 O_{\rm SM,d}^2\right)$ $+ g_{\rm SM}^2 g_{\rm BSM}^3 \cdot \left(O_{\rm SM,p}^2 \Re(O_{\rm SM,d}^* O_{\rm BSM,d}) + \Re(O_{\rm SM,p}^* O_{\rm BSM,p})O_{\rm SM,d}^2\right).$

Now need 5 distribution templates instead of 3, but otherwise fundamentally not more complicated

EFT morphing – adding parameters

• Morphing method can be generalized to have >2 parameters

$$|\mathcal{M}(\vec{g})|^2 = \underbrace{\left(\sum_{x \in p, b} g_x \mathcal{O}(g_x)\right)^2}_{\text{production}} \cdot \underbrace{\left(\sum_{x \in d, b} g_x \mathcal{O}(g_x)\right)^2}_{\text{decay}}.$$

• But number of terms in expression (and thus number of input distributions) grows rapidly with number of theory parameters

$$N_{samples} = \frac{1}{24} s(s+1)(s+2)[(s+3)+4(p+d)] + \frac{1}{4} [s(s+1)p(p+1)+s(s+1)d(d+1)+p(p+1)d(d+1)] + \frac{1}{2} pds(p+d+s+1)d(d+1) + \frac{1}{2} pds(p+d+s+1)d(d+1)d(d+1) + \frac{1}{2} pds(p+d+s+1)d(d$$

Process	n_p	n_d	n_s	N	n - #parama in prod only
ggF $H \rightarrow ZZ^* \rightarrow 4\ell$ truth	1	2	0	3	n – #params in decay only
VBF $H \rightarrow WW^* \rightarrow e\nu\mu\nu$ truth	0	0	3	15	$n_d = $ #params in occay only $n_d = $ #params in prod&decay
ggF $H \rightarrow ZZ^* \rightarrow 4\ell$ reconstructed	1	3	0	6	$m_{\rm S} = mparamonarmon mprodadoeday$
VBF $H \rightarrow \mu\mu$ truth	13	1	0	91	Wouter Verkerke, NIKHEF

+3)

Ambitions for LHC run-2

• Case study: can we practically describe experimental observable distributions as function of the 15 parameters of the full Higgs Characterization Framework L for Higgs-V interactions

$$\mathcal{L}_{0}^{V} = \begin{cases} c_{\alpha} \kappa_{SM} \left[\frac{1}{2} \tilde{g}_{HZZ} Z_{\mu} Z^{\mu} + \tilde{g}_{HWW} W_{\mu}^{+} W^{-\mu} \right] & \text{Used in Run 1} \\ - \frac{1}{4} \left[c_{\alpha} \kappa_{H\gamma\gamma} \tilde{g}_{H\gamma\gamma} A_{\mu\nu} A^{\mu\nu} + s_{\alpha} \kappa_{A\gamma\gamma} \tilde{g}_{A\gamma\gamma} A_{\mu\nu} \tilde{A}^{\mu\nu} \right] \\ - \frac{1}{2} \left[c_{\alpha} \kappa_{HZ\gamma} \tilde{g}_{HZ\gamma} Z_{\mu\nu} A^{\mu\nu} + s_{\alpha} \kappa_{AZ\gamma} \tilde{g}_{AZ\gamma} Z_{\mu\nu} \tilde{A}^{\mu\nu} \right] \\ - \frac{1}{4} \left[c_{\alpha} \kappa_{Hgg} \tilde{g}_{Hgg} G_{\mu\nu}^{a} G^{a,\mu\nu} + s_{\alpha} \kappa_{Agg} \tilde{g}_{Agg} G_{\mu\nu}^{a} \tilde{G}^{a,\mu\nu} \right] \\ - \frac{1}{4} \left[c_{\alpha} \kappa_{Hgg} \tilde{g}_{Hgg} G_{\mu\nu}^{a} G^{a,\mu\nu} + s_{\alpha} \kappa_{Agg} \tilde{g}_{Agg} G_{\mu\nu}^{a} \tilde{G}^{a,\mu\nu} \right] \\ - \frac{1}{4} \frac{1}{\Lambda} \left[c_{\alpha} \kappa_{HZZ} Z_{\mu\nu} Z^{\mu\nu} + s_{\alpha} \kappa_{AZZ} Z_{\mu\nu} \tilde{Z}^{\mu\nu} \right] \\ - \frac{1}{2} \frac{1}{\Lambda} \left[c_{\alpha} \kappa_{HWW} W_{\mu\nu}^{+} W^{-\mu\nu} + s_{\alpha} \kappa_{AWW} W_{\mu\nu}^{+} \tilde{W}^{-\mu\nu} \right] \\ - \frac{1}{4} c_{\alpha} \left[\kappa_{H\partial\gamma} Z_{\nu} \partial_{\mu} A^{\mu\nu} + \kappa_{H\partial Z} Z_{\nu} \partial_{\mu} Z^{\mu\nu} + \kappa_{H\partial W} (W_{\nu}^{+} \partial_{\mu} W^{-\mu\nu} + h.c.) \right] \right\} X_{0}$$

$$\mathcal{L}_0^f = -\sum_{f=t,b,\tau} \bar{\psi}_f \big(c_\alpha \kappa_{Hff} g_{Hff} + i s_\alpha \kappa_{Aff} g_{Aff} \gamma_5 \big) \psi_f X_0$$

Fermions...

Morphing example 2: VBH \rightarrow H \rightarrow WW

Template weights (polynomials in k_i)

Wouter Verkerke, NIKHEF

Template histograms

A concrete example VBH \rightarrow H \rightarrow WW

Truth-level validation study on simulation samples

- Procedure
 - VBF H→WW process with SM (gSM) and 2 BSM operators (gHWW, gAWW)
 50k events generated. Kinematic observable used: Δφ*jj*, Only signal considered
 - 15 samples with different parameter settings used to construct EFT morphing model

Truth-level validation study on simulation samples

- Procedure
 - VBF H→WW process with SM (gSM) and 2 BSM operators (gHWW, gAWW)
 50k events generated. Kinematic observable used: Δφjj, Only signal considered
 - 15 samples with different parameter settings used to construct EFT morphing model
 - Validation sample is fitted to morphing model

A more ambitious example: VBF vertex using full HCF

Implement complete VBF vertex of Higgs Characterization Lagrangian

• 13 parameters \rightarrow 91 terms in $|M|^2 \rightarrow$ 91 input distributions needed

 $T_{out}(k_{SM}, k_{HVVV}, k_{AVVV}) = \Sigma w_i(k_{SM}, k_{HVVV}, k_{AVVV}) * T_{in,i}$

Generator level, signal only samples used with 30k events each Setup fit to SM input sample. Observables: $\Delta \phi_{jj}$, p_T^{j1} , m_{jj} , $\Delta \eta_{jj}$

A more ambitious example: VBF vertex using full HCF

• Example of shape changes in distributions due to k_{HWW}

Sensivity to 13 parameters of VBF vertex

Construct simple binned likelihood to combine information of the 4 observables

Fit to pseudo-data sample with 8% cross-section uncertainty

parameter	post-fit value	+	-
Λ	1000.		
$\cos \alpha$	0.71		
KHłł	1.41		
$\kappa_{A\gamma\gamma}$	0	+219	-441
K _{Aww}	0	+3	-2.6
KAZY	0	+441	-398
KAZZ	0	+2.7	-1.3
$\kappa_{H\gamma\gamma}$	0	+236	-91
$\kappa_{H\partial\gamma}$	0	+0.3	-0.6
KH∂wI	0	+1.6	-0
K _{H∂w} R	0	+0.5	-0.3
KH∂z	0	+1.2	-0.5
K _{Hww}	0	+1.5	-3
K _{Hzγ}	0	+38	-49
K _{Hzz}	0	+8	-2.5
ĸ _{SM}	1.41	+0.22	-0.11

Generality of the method

- Morphing only requires that any differential cross section can be expressed as polynomial in BSM couplings
- Method can be used on any generator that allows one to vary input couplings
- Works on truth and reco-level distributions
- Independent of physics process
- Works on distributions and cross sections

Effective Lagrangian Morphing - open issues, points of attention

- Effective Lagrangian Morphing is still in development Likelihood modeling effort with ELM a lot more ambitious than implementing k-framework, thus several open issues, points of attention
- 1. Getting a reasonable MC statistical uncertainty on prediction everywhere in the used parameter space
- 2. Numerical stability of computations as number of parameters and samples grow
- Not all degrees of freedom can be measured well → choosing a good basis for the signal parameter degrees of freedom you're interested in.
- Recommendations for ELM will continue to evolve

MC statistical uncertainty on model predictions

- Morphing model prediction is weighted sum of templates.
- Need to take care that relevant regions of parameters do not end up being modeled by low-statistics samples with large scale factors.
- Need to choose sampling points in parameter space intelligently

MC statistical uncertainty on model predictions

 Another example: VBF Higgs with 1 SM & 1 BSM coupling Sample distribution S(1, -2), S(1, -1), S(1, 0), S(1, 1), S (0, 1).

Issues on basis choice

- Choosing the basis (collection of input samples) for a morphing problem is a potentially hard problem involving tradeoffs.
 - Putting samples close expected region of results promotes maximum precision in this region, but may strongly inflate morphing template uncertainties when measured parameters are far outside region
 - A wider spread of sampling points will ensure a more uniform statistical precision over the parameter space, at the expense of best precision in the region of interest
 - Generally, numeric feasibility becomes harder as #samples increase (What happens if you have >>1000 samples?)
 - Practical extent of issue still under study as no full chain physics analysis has been done yet.
- Nevertheless several ideas & tests are under development
 - Condition Numbers as predictor of stability
 - Dynamical morphing (basis varies as function of location in parameter space)

Numerical stability as number of samples grows

Condition that morphing model evaluates to each input template at appropriate point in parameter space leads to a set of constraints in matrix form

$$1 = a_{11}g_{\text{SM},1}^{2} + a_{12}g_{\text{BSM},1}^{2} + a_{13}g_{\text{SM},1}g_{\text{BSM},1}$$

$$0 = a_{21}g_{\text{SM},1}^{2} + a_{22}g_{\text{BSM},1}^{2} + a_{23}g_{\text{SM},1}g_{\text{BSM},1}$$

$$\dots$$

$$\begin{pmatrix}a_{11} & a_{12} & a_{13}\\a_{21} & a_{22} & a_{23}\\a_{31} & a_{32} & a_{33}\end{pmatrix} \cdot \begin{pmatrix}g_{\text{SM},1}^{2} & g_{\text{SM},2}^{2} & g_{\text{SM},3}^{2}\\g_{\text{BSM},1}^{2} & g_{\text{BSM},2}^{2} & g_{\text{BSM},3}^{2}\\g_{\text{BSM},1}^{2} & g_{\text{BSM},2}^{2} & g_{\text{BSM},3}^{2}\\g_{\text{SM},1}^{2} & g_{\text{BSM},2}^{2} & g_{\text{BSM},3}^{2}\\g_{\text{SM},1}^{2} & g_{\text{BSM},2}^{2} & g_{\text{BSM},3}^{2}\\ \Leftrightarrow \quad A \cdot G = 1$$

Definite solution $A = G^{-1}$

 Matrix G must have det(G)≠0 clearly for inversion to succeed, but also close-to singular form may lead to numerical difficulties

Numerical stability as number of samples grows

 But if G is close to singular, then weights w_i of template morphing expression will react very strongly to minute changes in parameters g

$$T_{out}(g_{SM}, g_{BSM}) = \underbrace{(a_{11}g_{SM}^{2} + a_{12}g_{BSM}^{2} + a_{13}g_{SM}g_{BSM})}_{W_{1}} T_{in}(g_{SM,1}, g_{BSM,1})$$

$$+ \underbrace{(a_{21}g_{SM}^{2} + a_{22}g_{BSM}^{2} + a_{23}g_{SM}g_{BSM})}_{W_{2}} T_{in}(g_{SM,2}, g_{BSM,2})$$

$$+ \underbrace{(a_{31}g_{SM}^{2} + a_{32}g_{BSM}^{2} + a_{33}g_{SM}g_{BSM})}_{W_{2}} T_{in}(g_{SM,3}, g_{BSM,3})$$

• Can estimate the amplification effect $\delta g \rightarrow \delta w$ with the condition number of the matrix $A = G^{-1}$

$$\frac{\|x - x'\|}{\|x\|} \le cond(A) \frac{\|b - b'\|}{\|b\|}$$

$$cond(A) = \|A\|_{1} \bullet \|A^{-1}\|_{1} \|A\|_{1} = \max_{1 \le j \le n} \sum_{i=1}^{n} |a_{ij}|$$

10-log of condition number indicative of number of significant digits lost ^{*l*=1} when numerically solving equations for weights Wouter Verkerke, NIKHEF

Ideas for improving statistical precision

 Can generate more samples than needed for basis, e.g. with both dense and sparse sampling. Then choose a posteriori set of samples for local basis with best stat uncertainty → 'Dynamical morphing'

Outline of idea

- Add templates at additional sampling points (shown in black) in region of interest ~(0,0)
- 2. Redundancy in sampling points allow to choose multiple subsets to construct morphing model
- 3. Choose combination of samples that result in lowest condition number

Dynamical morphing

 Inclusion of dense grid (block) in additional to sparse points (blue), improve performance of morphing stat uncertainty w.r.t sparsepoints only in the 'dense region' (as expected)

Using & integrating novel morphing tools - practicalities

 Most Higgs models built nowadays in HistFactory – supports for now only vertical interpolation natively (RooFit class PiecewiseInterpolation)

- Novel morphing classes can be integrated in HistFactory models either by a-posteriori replacement operations (Workspace EDIT operator), or by extension of HistFactory code to be aware of novel types of morphing techniques
 - A posteriori replacement technique already used in Run-1 (e.g to insert Moment Morphing classes in HistFactory models)
 - Expect also progress here (both in code updates and hands-on tutorials)

Using & integrating novel morphing tools - practicalities

- Focus of todays workshop is a software tutorial on RooFit class RooEFTMorphFunc, as functional replacement of PiecewiseInterpolation for (Higgs) signal morphing
 - Mostly focus on configuring getting example RooEFTMorphFunc class properly configured and working (complexities due to many more samples, parameters than in vertical morphing)
 - Some extra tutorial (for those that are fast) on how to generate input samples (since closely tied to morphing pdf definition) to be able to explore other configurations
- Still many items uncovered today → There will be a 2nd workshop in few weeks
- Tentative agenda items for 2nd workshop
 - Other implementations of morphing functions, with inclusion of dynamical morphing, integration of morphing functions into workspaces
 - More information on generating samples
 - Discussion of basis choices