Geant 4

2016 Development Plan

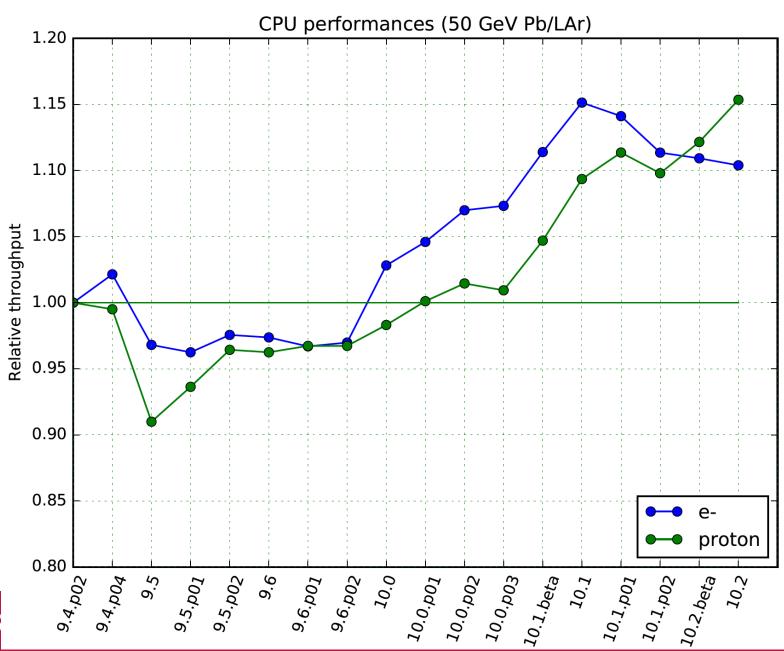
- non-physics part -

Makoto Asai (SLAC)
On behalf of the Geant4 Collaboration
Geant4 Technical Forum
March 23, 2016

Contents

- Full set of proposed 2016 work plan would be found at http://geant4.web.cern.ch/geant4/support/planned_features.shtml
- In this talk I will summarize some key development items in non-physics part of the work plan.
- For all categories :
 - Implement use of C++11 constructs in key areas
- Your suggestions, comments, requirements are essential.

Memory consumption



Computing performance in sequential mode

Geometry / transportation / persistency / analysis

- Geometry / transportation
 - Review use of regular navigation in conjunction with multiple-scattering
 - Profiling and optimization of multiple navigation
 - Separate safety computation from navigator
 - Introduction of fast and high-order steppers in field propagation
 - Introduction of scaled shapes construct
 - Complete implementation of the Unified Solids library with progressive adoption of shapes from VecGeom
- Persistency / analysis
 - Extend reader/writer to support scaled shapes
 - Support for parallel geometry in ASCII module
 - Evaluate parallel paging for ntuples for Root and eventually Csv formats
 - Support for handling more than one output files by one analysis manager

Material / generic process

- Materials
 - Evaluate usage of G4float for material data instead of G4double
 - Improved G4Exception usage in material classes
 - Extension through abstract interface to provide information about processes using extended properties - (*)
- Geometry Biasing & Importance
 - Switching between generic and geometrical biasing
 - Command line and "smart" biasing scheme
 - Consolidate geometrical biasing for the case of deleted and re-instantiated geometries
- Generic Biasing
 - Enrich event biasing options: Bremmstrhalung splitting; leading particle biasing
 - Prototype: biasing of charged particles; occurrence biasing; DXTRAN-like biasing;
 material/isotope biasing; Woodcock tracking; implicit capture
- Reverse Monte Carlo
 - Improvements of EM processes for case of thick shielding
 - Complete migration to multi-threading

Run, event and detector response / physics list / user interface

- Run, event and detector response
 - Multi-threading:
 - Finalize new design of threads (allow threads to join/leave workers pool)
 - Migration from Posix threads to std::thread
 - Enhanced General Particle Source (GPS) in MT mode
 - Porting of material scanner to MT
 - Extension of scoring w/ analysis and MT improvements
 - Migration to use of MinMax random engine and array interface
 - Introduction of HepMC-3 interface
- Physics list
 - Merging of existing factory G4GenericPhysicsList and G4alt::G4PhysListFactory
 - Deletion of builders in multi-threaded mode
- User interface
 - Implement CTest testing for G4Py
 - Provide an alternative way for distributing random number seeds with MPI
 - Provide a method of load balance between MPI ranks

Visualization

- New drivers :
 - OGLFile, ParaView,
 - G4DAE,PDF3D, vizualization for iOS and Android (*)
- Full support for visualization of Boolean shapes
- Support of user-drawn primitives in multi-threaded mode (*)
- Enhancement to existing viewers :
 - Additional functionalities to supports save and restore viewpoint in OpenGL drivers
 - Adapt to newer OpenGL versions, exploit new functionalities and replace deprecated calls such as glBegin/glEnd
 - Support save and restore viewpoint and save replay fly-through in OpenInventor –
 (*)
 - Updated HepRAPP viewer to make it work with newer Java versions (*)
 - Updates to gMocrenFile and gMocren to support visualization attributes and other information - (*)
 - Change from flat format to hierarchical format in VRML (*)
- New Transparent Visualization tool to support high resolution transparent visualization with ability to rotate and zoom - (*)
- Visualization of GPS source (*)

Examples

- Basic & Extended Examples
 - New extended example (Hadr07) focused on testing physics
 - Extended biasing examples: fix overlap among B02, B03 and GB03 examples
 - New extended example showing how to create or use a physics list
 - New extended example demonstrating monitoring of steps/tracks
 - Investigation of MongoDB interface for analysis
- Advanced examples
 - Implementation of the LTE/RBE modeling derived by experimental measurements in hadrontherapy example
 - Introduction of polarized physics in GammaRayTel example, to build an experiment for polarised gamma detection
 - Testing suite against the TG43 reference by using the brachytherapy example
 - Upgrade of human_phantom example with extension to nuclear medicine (*)

Support of version 9.6

- Support of version 9.6 has been ceased at the time of 10.2 release.
 - No further official patch will be released for v9.6 (or earlier versions).
- Users are requested to communicate with us urgently if there is an explicit need for extending support of v9.6.
 - Please note, migration effort to version 10 series is minimal if the user sticks to the sequential mode, and still gets remarkable performance gain.

