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In addition to the topic I’ll talk about
there are several other ideas we’re interested in

inf
lati

on

very light Z’
alternatives to freeze-out DM

that I’d be happy to discuss

Hilbert series



Part II: 

Hunting Dark Matter at the LHC
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Summary of CMS SUSY Results* in SMS framework

CMS Preliminary

m(mother)-m(LSP)=200 GeV m(LSP)=0 GeV

ICHEP 2014

lspm⋅+(1-x)motherm⋅ = xintermediatem
For decays with intermediate mass,

Only a selection of available mass limits
*Observed limits, theory uncertainties not included

Probe *up to* the quoted mass limit

Motivation
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Why electroweakinos?

electroweakinos = admixtures of Higgsino, Bino, Wino

charginos (Higgsinos, Winos): 

Electroweak-ino sector of the MSSM 

Higgsinos, Wino, Bino admixtures

mass of the top quark, the QCD coupling, and other details. In principle, there is also a constraint on
cos β if one requires that yb and yτ do not become nonperturbatively large. This gives a rough upper
bound of tan β <∼ 65. However, this is complicated somewhat by the fact that the bottom quark mass
gets significant one-loop non-QCD corrections in the large tan β limit [205]. One can obtain a stronger
upper bound on tan β in some models where m2

Hu
= m2

Hd
at the input scale, by requiring that yb does

not significantly exceed yt. [Otherwise, Xb would be larger than Xt in eqs. (6.5.39) and (6.5.40), so
one would expect m2

Hd
< m2

Hu
at the electroweak scale, and the minimum of the potential would have

⟨H0
d ⟩ > ⟨H0

u⟩. This would be a contradiction with the supposition that tan β is large.] The parameter
tan β also directly impacts the masses and mixings of the MSSM sparticles, as we will see below.

8.2 Neutralinos and charginos

The higgsinos and electroweak gauginos mix with each other because of the effects of electroweak
symmetry breaking. The neutral higgsinos (H̃0

u and H̃0
d ) and the neutral gauginos (B̃, W̃ 0) combine

to form four mass eigenstates called neutralinos. The charged higgsinos (H̃+
u and H̃−

d ) and winos (W̃+

and W̃−) mix to form two mass eigenstates with charge ±1 called charginos. We will denote† the
neutralino and chargino mass eigenstates by Ñi (i = 1, 2, 3, 4) and C̃±

i (i = 1, 2). By convention, these
are labeled in ascending order, so that m

Ñ1
< m

Ñ2
< m

Ñ3
< m

Ñ4
and m

C̃1
< m

C̃2
. The lightest

neutralino, Ñ1, is usually assumed to be the LSP, unless there is a lighter gravitino or unless R-parity
is not conserved, because it is the only MSSM particle that can make a good dark matter candidate.
In this subsection, we will describe the mass spectrum and mixing of the neutralinos and charginos in
the MSSM.

In the gauge-eigenstate basis ψ0 = (B̃, W̃ 0, H̃0
d , H̃

0
u), the neutralino mass part of the Lagrangian is

Lneutralino mass = −1
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The entries M1 and M2 in this matrix come directly from the MSSM soft Lagrangian [see eq. (6.3.1)],
while the entries −µ are the supersymmetric higgsino mass terms [see eq. (6.1.4)]. The terms propor-
tional to g, g′ are the result of Higgs-higgsino-gaugino couplings [see eq. (3.4.9) and Figure 3.3g,h], with
the Higgs scalars replaced by their VEVs [eqs. (8.1.6), (8.1.7)]. This can also be written as

M
Ñ

=

⎛

⎜⎜⎝

M1 0 −cβ sW mZ sβ sW mZ
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⎞

⎟⎟⎠ . (8.2.3)

Here we have introduced abbreviations sβ = sin β, cβ = cos β, sW = sin θW , and cW = cos θW . The
mass matrix M

Ñ
can be diagonalized by a unitary matrix N to obtain mass eigenstates:

Ñi = Nijψ
0
j , (8.2.4)

†Other common notations use χ̃0
i or Z̃i for neutralinos, and χ̃±

i or W̃±
i for charginos.
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M
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=
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−cβ sW mZ cβ cW mZ 0 −µ
sβ sW mZ −sβ cW mZ −µ 0

⎞

⎟⎟⎠ . (8.2.3)

Here we have introduced abbreviations sβ = sin β, cβ = cos β, sW = sin θW , and cW = cos θW . The
mass matrix M

Ñ
can be diagonalized by a unitary matrix N to obtain mass eigenstates:

Ñi = Nijψ
0
j , (8.2.4)

†Other common notations use χ̃0
i or Z̃i for neutralinos, and χ̃±

i or W̃±
i for charginos.
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values of the parameters; in particular the above labeling of Ñ1 and Ñ2 assumes M1 < M2 ≪ |µ|. This
limit, leading to a bino-like neutralino LSP, often emerges from MSUGRA boundary conditions on the
soft parameters, which tend to require it in order to get correct electroweak symmetry breaking.

The chargino spectrum can be analyzed in a similar way. In the gauge-eigenstate basis ψ± =
(W̃+, H̃+

u , W̃−, H̃−
d ), the chargino mass terms in the Lagrangian are

Lchargino mass = −1

2
(ψ±)TM

C̃
ψ± + c.c. (8.2.12)

where, in 2× 2 block form,

M
C̃

=
(
0 XT

X 0

)
, (8.2.13)

with

X =
(
M2 gvu
gvd µ

)
=
(

M2

√
2sβmW√

2cβmW µ

)
. (8.2.14)

The mass eigenstates are related to the gauge eigenstates by two unitary 2×2 matrices U and V

according to
(
C̃+
1

C̃+
2

)
= V

(
W̃+

H̃+
u

)
,

(
C̃−
1

C̃−
2

)
= U

(
W̃−

H̃−
d

)
. (8.2.15)

Note that the mixing matrix for the positively charged left-handed fermions is different from that for
the negatively charged left-handed fermions. They are chosen so that

U∗XV−1 =
(
m

C̃1
0

0 m
C̃2

)
, (8.2.16)

with positive real entries m
C̃i
. Because these are only 2×2 matrices, it is not hard to solve for the

masses explicitly:

m2
C̃1
,m2

C̃2
=

1

2

[
|M2|2 + |µ|2 + 2m2

W

∓
√
(|M2|2 + |µ|2 + 2m2

W )2 − 4|µM2 −m2
W sin 2β|2

]
. (8.2.17)

These are the (doubly degenerate) eigenvalues of the 4 × 4 matrix M
†
C̃
M

C̃
, or equivalently the eigen-

values of X†X, since

VX†XV−1 = U∗XX†UT =

(
m2

C̃1

0

0 m2
C̃2

)

. (8.2.18)

(But, they are not the squares of the eigenvalues of X.) In the limit of eq. (8.2.7) with real M2 and µ,
the chargino mass eigenstates consist of a wino-like C̃±

1 and and a higgsino-like C̃±
2 , with masses

m
C̃1

= M2 −
m2

W (M2 + µ sin 2β)

µ2 −M2
2

+ . . . (8.2.19)

m
C̃2

= |µ|+ m2
W I(µ+M2 sin 2β)

µ2 −M2
2

+ . . . . (8.2.20)

Here again the labeling assumes M2 < |µ|, and I is the sign of µ. Amusingly, C̃1 is nearly degenerate
with the neutralino Ñ2 in the approximation shown, but that is not an exact result. Their higgsino-like
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mass of the top quark, the QCD coupling, and other details. In principle, there is also a constraint on
cos β if one requires that yb and yτ do not become nonperturbatively large. This gives a rough upper
bound of tan β <∼ 65. However, this is complicated somewhat by the fact that the bottom quark mass
gets significant one-loop non-QCD corrections in the large tan β limit [205]. One can obtain a stronger
upper bound on tan β in some models where m2

Hu
= m2

Hd
at the input scale, by requiring that yb does

not significantly exceed yt. [Otherwise, Xb would be larger than Xt in eqs. (6.5.39) and (6.5.40), so
one would expect m2

Hd
< m2

Hu
at the electroweak scale, and the minimum of the potential would have

⟨H0
d ⟩ > ⟨H0

u⟩. This would be a contradiction with the supposition that tan β is large.] The parameter
tan β also directly impacts the masses and mixings of the MSSM sparticles, as we will see below.

8.2 Neutralinos and charginos

The higgsinos and electroweak gauginos mix with each other because of the effects of electroweak
symmetry breaking. The neutral higgsinos (H̃0

u and H̃0
d ) and the neutral gauginos (B̃, W̃ 0) combine

to form four mass eigenstates called neutralinos. The charged higgsinos (H̃+
u and H̃−

d ) and winos (W̃+

and W̃−) mix to form two mass eigenstates with charge ±1 called charginos. We will denote† the
neutralino and chargino mass eigenstates by Ñi (i = 1, 2, 3, 4) and C̃±

i (i = 1, 2). By convention, these
are labeled in ascending order, so that m

Ñ1
< m

Ñ2
< m

Ñ3
< m

Ñ4
and m

C̃1
< m

C̃2
. The lightest

neutralino, Ñ1, is usually assumed to be the LSP, unless there is a lighter gravitino or unless R-parity
is not conserved, because it is the only MSSM particle that can make a good dark matter candidate.
In this subsection, we will describe the mass spectrum and mixing of the neutralinos and charginos in
the MSSM.

In the gauge-eigenstate basis ψ0 = (B̃, W̃ 0, H̃0
d , H̃

0
u), the neutralino mass part of the Lagrangian is

Lneutralino mass = −1

2
(ψ0)TM

Ñ
ψ0 + c.c., (8.2.1)

where

M
Ñ

=

⎛

⎜⎜⎝

M1 0 −g′vd/
√
2 g′vu/

√
2

0 M2 gvd/
√
2 −gvu/

√
2

−g′vd/
√
2 gvd/

√
2 0 −µ

g′vu/
√
2 −gvu/

√
2 −µ 0

⎞

⎟⎟⎠ . (8.2.2)

The entries M1 and M2 in this matrix come directly from the MSSM soft Lagrangian [see eq. (6.3.1)],
while the entries −µ are the supersymmetric higgsino mass terms [see eq. (6.1.4)]. The terms propor-
tional to g, g′ are the result of Higgs-higgsino-gaugino couplings [see eq. (3.4.9) and Figure 3.3g,h], with
the Higgs scalars replaced by their VEVs [eqs. (8.1.6), (8.1.7)]. This can also be written as

M
Ñ

=

⎛

⎜⎜⎝

M1 0 −cβ sW mZ sβ sW mZ

0 M2 cβ cW mZ −sβ cW mZ

−cβ sW mZ cβ cW mZ 0 −µ
sβ sW mZ −sβ cW mZ −µ 0

⎞

⎟⎟⎠ . (8.2.3)

Here we have introduced abbreviations sβ = sin β, cβ = cos β, sW = sin θW , and cW = cos θW . The
mass matrix M

Ñ
can be diagonalized by a unitary matrix N to obtain mass eigenstates:

Ñi = Nijψ
0
j , (8.2.4)

†Other common notations use χ̃0
i or Z̃i for neutralinos, and χ̃±

i or W̃±
i for charginos.
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Ñ1
< m

Ñ2
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values of the parameters; in particular the above labeling of Ñ1 and Ñ2 assumes M1 < M2 ≪ |µ|. This
limit, leading to a bino-like neutralino LSP, often emerges from MSUGRA boundary conditions on the
soft parameters, which tend to require it in order to get correct electroweak symmetry breaking.

The chargino spectrum can be analyzed in a similar way. In the gauge-eigenstate basis ψ± =
(W̃+, H̃+

u , W̃−, H̃−
d ), the chargino mass terms in the Lagrangian are

Lchargino mass = −1

2
(ψ±)TM

C̃
ψ± + c.c. (8.2.12)

where, in 2× 2 block form,

M
C̃

=
(
0 XT

X 0

)
, (8.2.13)

with

X =
(
M2 gvu
gvd µ

)
=
(

M2

√
2sβmW√

2cβmW µ

)
. (8.2.14)

The mass eigenstates are related to the gauge eigenstates by two unitary 2×2 matrices U and V

according to
(
C̃+
1

C̃+
2

)
= V

(
W̃+

H̃+
u

)
,

(
C̃−
1

C̃−
2

)
= U

(
W̃−

H̃−
d

)
. (8.2.15)

Note that the mixing matrix for the positively charged left-handed fermions is different from that for
the negatively charged left-handed fermions. They are chosen so that

U∗XV−1 =
(
m

C̃1
0

0 m
C̃2

)
, (8.2.16)

with positive real entries m
C̃i
. Because these are only 2×2 matrices, it is not hard to solve for the

masses explicitly:

m2
C̃1
,m2

C̃2
=

1

2

[
|M2|2 + |µ|2 + 2m2

W

∓
√
(|M2|2 + |µ|2 + 2m2

W )2 − 4|µM2 −m2
W sin 2β|2

]
. (8.2.17)

These are the (doubly degenerate) eigenvalues of the 4 × 4 matrix M
†
C̃
M

C̃
, or equivalently the eigen-

values of X†X, since

VX†XV−1 = U∗XX†UT =

(
m2

C̃1

0

0 m2
C̃2

)

. (8.2.18)

(But, they are not the squares of the eigenvalues of X.) In the limit of eq. (8.2.7) with real M2 and µ,
the chargino mass eigenstates consist of a wino-like C̃±

1 and and a higgsino-like C̃±
2 , with masses

m
C̃1

= M2 −
m2

W (M2 + µ sin 2β)

µ2 −M2
2

+ . . . (8.2.19)

m
C̃2

= |µ|+ m2
W I(µ+M2 sin 2β)

µ2 −M2
2

+ . . . . (8.2.20)

Here again the labeling assumes M2 < |µ|, and I is the sign of µ. Amusingly, C̃1 is nearly degenerate
with the neutralino Ñ2 in the approximation shown, but that is not an exact result. Their higgsino-like
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mass of the top quark, the QCD coupling, and other details. In principle, there is also a constraint on
cos β if one requires that yb and yτ do not become nonperturbatively large. This gives a rough upper
bound of tan β <∼ 65. However, this is complicated somewhat by the fact that the bottom quark mass
gets significant one-loop non-QCD corrections in the large tan β limit [205]. One can obtain a stronger
upper bound on tan β in some models where m2

Hu
= m2

Hd
at the input scale, by requiring that yb does

not significantly exceed yt. [Otherwise, Xb would be larger than Xt in eqs. (6.5.39) and (6.5.40), so
one would expect m2

Hd
< m2

Hu
at the electroweak scale, and the minimum of the potential would have

⟨H0
d ⟩ > ⟨H0

u⟩. This would be a contradiction with the supposition that tan β is large.] The parameter
tan β also directly impacts the masses and mixings of the MSSM sparticles, as we will see below.
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i (i = 1, 2). By convention, these
are labeled in ascending order, so that m

Ñ1
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Ñ

=

⎛

⎜⎜⎝

M1 0 −g′vd/
√
2 g′vu/

√
2

0 M2 gvd/
√
2 −gvu/

√
2

−g′vd/
√
2 gvd/

√
2 0 −µ

g′vu/
√
2 −gvu/

√
2 −µ 0

⎞

⎟⎟⎠ . (8.2.2)

The entries M1 and M2 in this matrix come directly from the MSSM soft Lagrangian [see eq. (6.3.1)],
while the entries −µ are the supersymmetric higgsino mass terms [see eq. (6.1.4)]. The terms propor-
tional to g, g′ are the result of Higgs-higgsino-gaugino couplings [see eq. (3.4.9) and Figure 3.3g,h], with
the Higgs scalars replaced by their VEVs [eqs. (8.1.6), (8.1.7)]. This can also be written as

M
Ñ
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u⟩. This would be a contradiction with the supposition that tan β is large.] The parameter
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u and H̃0
d ) and the neutral gauginos (B̃, W̃ 0) combine

to form four mass eigenstates called neutralinos. The charged higgsinos (H̃+
u and H̃−

d ) and winos (W̃+

and W̃−) mix to form two mass eigenstates with charge ±1 called charginos. We will denote† the
neutralino and chargino mass eigenstates by Ñi (i = 1, 2, 3, 4) and C̃±

i (i = 1, 2). By convention, these
are labeled in ascending order, so that m

Ñ1
< m

Ñ2
< m

Ñ3
< m

Ñ4
and m

C̃1
< m

C̃2
. The lightest

neutralino, Ñ1, is usually assumed to be the LSP, unless there is a lighter gravitino or unless R-parity
is not conserved, because it is the only MSSM particle that can make a good dark matter candidate.
In this subsection, we will describe the mass spectrum and mixing of the neutralinos and charginos in
the MSSM.

In the gauge-eigenstate basis ψ0 = (B̃, W̃ 0, H̃0
d , H̃

0
u), the neutralino mass part of the Lagrangian is

Lneutralino mass = −1
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(ψ0)TM
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ψ0 + c.c., (8.2.1)
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The entries M1 and M2 in this matrix come directly from the MSSM soft Lagrangian [see eq. (6.3.1)],
while the entries −µ are the supersymmetric higgsino mass terms [see eq. (6.1.4)]. The terms propor-
tional to g, g′ are the result of Higgs-higgsino-gaugino couplings [see eq. (3.4.9) and Figure 3.3g,h], with
the Higgs scalars replaced by their VEVs [eqs. (8.1.6), (8.1.7)]. This can also be written as

M
Ñ

=

⎛

⎜⎜⎝

M1 0 −cβ sW mZ sβ sW mZ

0 M2 cβ cW mZ −sβ cW mZ
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⎞

⎟⎟⎠ . (8.2.3)

Here we have introduced abbreviations sβ = sin β, cβ = cos β, sW = sin θW , and cW = cos θW . The
mass matrix M

Ñ
can be diagonalized by a unitary matrix N to obtain mass eigenstates:

Ñi = Nijψ
0
j , (8.2.4)

†Other common notations use χ̃0
i or Z̃i for neutralinos, and χ̃±

i or W̃±
i for charginos.
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values of the parameters; in particular the above labeling of Ñ1 and Ñ2 assumes M1 < M2 ≪ |µ|. This
limit, leading to a bino-like neutralino LSP, often emerges from MSUGRA boundary conditions on the
soft parameters, which tend to require it in order to get correct electroweak symmetry breaking.

The chargino spectrum can be analyzed in a similar way. In the gauge-eigenstate basis ψ± =
(W̃+, H̃+

u , W̃−, H̃−
d ), the chargino mass terms in the Lagrangian are

Lchargino mass = −1

2
(ψ±)TM

C̃
ψ± + c.c. (8.2.12)

where, in 2× 2 block form,

M
C̃

=
(
0 XT

X 0

)
, (8.2.13)

with

X =
(
M2 gvu
gvd µ

)
=
(

M2

√
2sβmW√

2cβmW µ

)
. (8.2.14)

The mass eigenstates are related to the gauge eigenstates by two unitary 2×2 matrices U and V

according to
(
C̃+
1

C̃+
2

)
= V

(
W̃+

H̃+
u

)
,

(
C̃−
1

C̃−
2

)
= U

(
W̃−

H̃−
d

)
. (8.2.15)

Note that the mixing matrix for the positively charged left-handed fermions is different from that for
the negatively charged left-handed fermions. They are chosen so that

U∗XV−1 =
(
m

C̃1
0

0 m
C̃2

)
, (8.2.16)

with positive real entries m
C̃i
. Because these are only 2×2 matrices, it is not hard to solve for the

masses explicitly:

m2
C̃1
,m2

C̃2
=

1

2

[
|M2|2 + |µ|2 + 2m2

W

∓
√
(|M2|2 + |µ|2 + 2m2

W )2 − 4|µM2 −m2
W sin 2β|2

]
. (8.2.17)

These are the (doubly degenerate) eigenvalues of the 4 × 4 matrix M
†
C̃
M

C̃
, or equivalently the eigen-

values of X†X, since

VX†XV−1 = U∗XX†UT =

(
m2

C̃1

0

0 m2
C̃2

)

. (8.2.18)

(But, they are not the squares of the eigenvalues of X.) In the limit of eq. (8.2.7) with real M2 and µ,
the chargino mass eigenstates consist of a wino-like C̃±

1 and and a higgsino-like C̃±
2 , with masses

m
C̃1

= M2 −
m2

W (M2 + µ sin 2β)

µ2 −M2
2

+ . . . (8.2.19)

m
C̃2

= |µ|+ m2
W I(µ+M2 sin 2β)

µ2 −M2
2

+ . . . . (8.2.20)

Here again the labeling assumes M2 < |µ|, and I is the sign of µ. Amusingly, C̃1 is nearly degenerate
with the neutralino Ñ2 in the approximation shown, but that is not an exact result. Their higgsino-like
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mass of the top quark, the QCD coupling, and other details. In principle, there is also a constraint on
cos β if one requires that yb and yτ do not become nonperturbatively large. This gives a rough upper
bound of tan β <∼ 65. However, this is complicated somewhat by the fact that the bottom quark mass
gets significant one-loop non-QCD corrections in the large tan β limit [205]. One can obtain a stronger
upper bound on tan β in some models where m2

Hu
= m2

Hd
at the input scale, by requiring that yb does

not significantly exceed yt. [Otherwise, Xb would be larger than Xt in eqs. (6.5.39) and (6.5.40), so
one would expect m2

Hd
< m2

Hu
at the electroweak scale, and the minimum of the potential would have

⟨H0
d ⟩ > ⟨H0

u⟩. This would be a contradiction with the supposition that tan β is large.] The parameter
tan β also directly impacts the masses and mixings of the MSSM sparticles, as we will see below.

8.2 Neutralinos and charginos

The higgsinos and electroweak gauginos mix with each other because of the effects of electroweak
symmetry breaking. The neutral higgsinos (H̃0

u and H̃0
d ) and the neutral gauginos (B̃, W̃ 0) combine

to form four mass eigenstates called neutralinos. The charged higgsinos (H̃+
u and H̃−

d ) and winos (W̃+

and W̃−) mix to form two mass eigenstates with charge ±1 called charginos. We will denote† the
neutralino and chargino mass eigenstates by Ñi (i = 1, 2, 3, 4) and C̃±

i (i = 1, 2). By convention, these
are labeled in ascending order, so that m

Ñ1
< m

Ñ2
< m

Ñ3
< m

Ñ4
and m

C̃1
< m

C̃2
. The lightest

neutralino, Ñ1, is usually assumed to be the LSP, unless there is a lighter gravitino or unless R-parity
is not conserved, because it is the only MSSM particle that can make a good dark matter candidate.
In this subsection, we will describe the mass spectrum and mixing of the neutralinos and charginos in
the MSSM.

In the gauge-eigenstate basis ψ0 = (B̃, W̃ 0, H̃0
d , H̃

0
u), the neutralino mass part of the Lagrangian is

Lneutralino mass = −1

2
(ψ0)TM

Ñ
ψ0 + c.c., (8.2.1)

where

M
Ñ

=

⎛

⎜⎜⎝

M1 0 −g′vd/
√
2 g′vu/

√
2

0 M2 gvd/
√
2 −gvu/

√
2

−g′vd/
√
2 gvd/

√
2 0 −µ

g′vu/
√
2 −gvu/

√
2 −µ 0

⎞

⎟⎟⎠ . (8.2.2)

The entries M1 and M2 in this matrix come directly from the MSSM soft Lagrangian [see eq. (6.3.1)],
while the entries −µ are the supersymmetric higgsino mass terms [see eq. (6.1.4)]. The terms propor-
tional to g, g′ are the result of Higgs-higgsino-gaugino couplings [see eq. (3.4.9) and Figure 3.3g,h], with
the Higgs scalars replaced by their VEVs [eqs. (8.1.6), (8.1.7)]. This can also be written as

M
Ñ

=

⎛

⎜⎜⎝

M1 0 −cβ sW mZ sβ sW mZ

0 M2 cβ cW mZ −sβ cW mZ

−cβ sW mZ cβ cW mZ 0 −µ
sβ sW mZ −sβ cW mZ −µ 0

⎞

⎟⎟⎠ . (8.2.3)

Here we have introduced abbreviations sβ = sin β, cβ = cos β, sW = sin θW , and cW = cos θW . The
mass matrix M

Ñ
can be diagonalized by a unitary matrix N to obtain mass eigenstates:

Ñi = Nijψ
0
j , (8.2.4)

†Other common notations use χ̃0
i or Z̃i for neutralinos, and χ̃±

i or W̃±
i for charginos.
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neutralino, Ñ1, is usually assumed to be the LSP, unless there is a lighter gravitino or unless R-parity
is not conserved, because it is the only MSSM particle that can make a good dark matter candidate.
In this subsection, we will describe the mass spectrum and mixing of the neutralinos and charginos in
the MSSM.

In the gauge-eigenstate basis ψ0 = (B̃, W̃ 0, H̃0
d , H̃

0
u), the neutralino mass part of the Lagrangian is

Lneutralino mass = −1

2
(ψ0)TM

Ñ
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values of the parameters; in particular the above labeling of Ñ1 and Ñ2 assumes M1 < M2 ≪ |µ|. This
limit, leading to a bino-like neutralino LSP, often emerges from MSUGRA boundary conditions on the
soft parameters, which tend to require it in order to get correct electroweak symmetry breaking.

The chargino spectrum can be analyzed in a similar way. In the gauge-eigenstate basis ψ± =
(W̃+, H̃+

u , W̃−, H̃−
d ), the chargino mass terms in the Lagrangian are

Lchargino mass = −1

2
(ψ±)TM

C̃
ψ± + c.c. (8.2.12)

where, in 2× 2 block form,

M
C̃

=
(
0 XT

X 0

)
, (8.2.13)

with

X =
(
M2 gvu
gvd µ

)
=
(

M2

√
2sβmW√

2cβmW µ

)
. (8.2.14)

The mass eigenstates are related to the gauge eigenstates by two unitary 2×2 matrices U and V

according to
(
C̃+
1

C̃+
2

)
= V

(
W̃+

H̃+
u

)
,

(
C̃−
1

C̃−
2

)
= U

(
W̃−

H̃−
d

)
. (8.2.15)

Note that the mixing matrix for the positively charged left-handed fermions is different from that for
the negatively charged left-handed fermions. They are chosen so that

U∗XV−1 =
(
m

C̃1
0

0 m
C̃2

)
, (8.2.16)

with positive real entries m
C̃i
. Because these are only 2×2 matrices, it is not hard to solve for the

masses explicitly:

m2
C̃1
,m2

C̃2
=

1

2

[
|M2|2 + |µ|2 + 2m2

W

∓
√
(|M2|2 + |µ|2 + 2m2

W )2 − 4|µM2 −m2
W sin 2β|2

]
. (8.2.17)

These are the (doubly degenerate) eigenvalues of the 4 × 4 matrix M
†
C̃
M

C̃
, or equivalently the eigen-

values of X†X, since

VX†XV−1 = U∗XX†UT =

(
m2

C̃1

0

0 m2
C̃2

)

. (8.2.18)

(But, they are not the squares of the eigenvalues of X.) In the limit of eq. (8.2.7) with real M2 and µ,
the chargino mass eigenstates consist of a wino-like C̃±

1 and and a higgsino-like C̃±
2 , with masses

m
C̃1

= M2 −
m2

W (M2 + µ sin 2β)

µ2 −M2
2

+ . . . (8.2.19)

m
C̃2

= |µ|+ m2
W I(µ+M2 sin 2β)

µ2 −M2
2

+ . . . . (8.2.20)

Here again the labeling assumes M2 < |µ|, and I is the sign of µ. Amusingly, C̃1 is nearly degenerate
with the neutralino Ñ2 in the approximation shown, but that is not an exact result. Their higgsino-like
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mass of the top quark, the QCD coupling, and other details. In principle, there is also a constraint on
cos β if one requires that yb and yτ do not become nonperturbatively large. This gives a rough upper
bound of tan β <∼ 65. However, this is complicated somewhat by the fact that the bottom quark mass
gets significant one-loop non-QCD corrections in the large tan β limit [205]. One can obtain a stronger
upper bound on tan β in some models where m2

Hu
= m2

Hd
at the input scale, by requiring that yb does

not significantly exceed yt. [Otherwise, Xb would be larger than Xt in eqs. (6.5.39) and (6.5.40), so
one would expect m2

Hd
< m2

Hu
at the electroweak scale, and the minimum of the potential would have

⟨H0
d ⟩ > ⟨H0

u⟩. This would be a contradiction with the supposition that tan β is large.] The parameter
tan β also directly impacts the masses and mixings of the MSSM sparticles, as we will see below.

8.2 Neutralinos and charginos

The higgsinos and electroweak gauginos mix with each other because of the effects of electroweak
symmetry breaking. The neutral higgsinos (H̃0

u and H̃0
d ) and the neutral gauginos (B̃, W̃ 0) combine

to form four mass eigenstates called neutralinos. The charged higgsinos (H̃+
u and H̃−

d ) and winos (W̃+

and W̃−) mix to form two mass eigenstates with charge ±1 called charginos. We will denote† the
neutralino and chargino mass eigenstates by Ñi (i = 1, 2, 3, 4) and C̃±

i (i = 1, 2). By convention, these
are labeled in ascending order, so that m

Ñ1
< m
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Ñ3
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Ñ4
and m

C̃1
< m

C̃2
. The lightest
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The entries M1 and M2 in this matrix come directly from the MSSM soft Lagrangian [see eq. (6.3.1)],
while the entries −µ are the supersymmetric higgsino mass terms [see eq. (6.1.4)]. The terms propor-
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can be diagonalized by a unitary matrix N to obtain mass eigenstates:

Ñi = Nijψ
0
j , (8.2.4)

†Other common notations use χ̃0
i or Z̃i for neutralinos, and χ̃±

i or W̃±
i for charginos.
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Ñ2
< m

Ñ3
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values of the parameters; in particular the above labeling of Ñ1 and Ñ2 assumes M1 < M2 ≪ |µ|. This
limit, leading to a bino-like neutralino LSP, often emerges from MSUGRA boundary conditions on the
soft parameters, which tend to require it in order to get correct electroweak symmetry breaking.

The chargino spectrum can be analyzed in a similar way. In the gauge-eigenstate basis ψ± =
(W̃+, H̃+

u , W̃−, H̃−
d ), the chargino mass terms in the Lagrangian are

Lchargino mass = −1

2
(ψ±)TM
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ψ± + c.c. (8.2.12)

where, in 2× 2 block form,
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, (8.2.13)

with
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)
. (8.2.14)

The mass eigenstates are related to the gauge eigenstates by two unitary 2×2 matrices U and V

according to
(
C̃+
1

C̃+
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)
= V
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W̃+

H̃+
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)
,
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C̃−
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= U
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W̃−
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d

)
. (8.2.15)

Note that the mixing matrix for the positively charged left-handed fermions is different from that for
the negatively charged left-handed fermions. They are chosen so that

U∗XV−1 =
(
m

C̃1
0

0 m
C̃2

)
, (8.2.16)

with positive real entries m
C̃i
. Because these are only 2×2 matrices, it is not hard to solve for the

masses explicitly:

m2
C̃1
,m2

C̃2
=

1

2

[
|M2|2 + |µ|2 + 2m2

W

∓
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W sin 2β|2

]
. (8.2.17)

These are the (doubly degenerate) eigenvalues of the 4 × 4 matrix M
†
C̃
M

C̃
, or equivalently the eigen-

values of X†X, since

VX†XV−1 = U∗XX†UT =

(
m2

C̃1

0

0 m2
C̃2

)

. (8.2.18)

(But, they are not the squares of the eigenvalues of X.) In the limit of eq. (8.2.7) with real M2 and µ,
the chargino mass eigenstates consist of a wino-like C̃±

1 and and a higgsino-like C̃±
2 , with masses

m
C̃1

= M2 −
m2

W (M2 + µ sin 2β)

µ2 −M2
2

+ . . . (8.2.19)

m
C̃2

= |µ|+ m2
W I(µ+M2 sin 2β)

µ2 −M2
2

+ . . . . (8.2.20)

Here again the labeling assumes M2 < |µ|, and I is the sign of µ. Amusingly, C̃1 is nearly degenerate
with the neutralino Ñ2 in the approximation shown, but that is not an exact result. Their higgsino-like
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mass of the top quark, the QCD coupling, and other details. In principle, there is also a constraint on
cos β if one requires that yb and yτ do not become nonperturbatively large. This gives a rough upper
bound of tan β <∼ 65. However, this is complicated somewhat by the fact that the bottom quark mass
gets significant one-loop non-QCD corrections in the large tan β limit [205]. One can obtain a stronger
upper bound on tan β in some models where m2

Hu
= m2

Hd
at the input scale, by requiring that yb does

not significantly exceed yt. [Otherwise, Xb would be larger than Xt in eqs. (6.5.39) and (6.5.40), so
one would expect m2

Hd
< m2

Hu
at the electroweak scale, and the minimum of the potential would have

⟨H0
d ⟩ > ⟨H0

u⟩. This would be a contradiction with the supposition that tan β is large.] The parameter
tan β also directly impacts the masses and mixings of the MSSM sparticles, as we will see below.

8.2 Neutralinos and charginos

The higgsinos and electroweak gauginos mix with each other because of the effects of electroweak
symmetry breaking. The neutral higgsinos (H̃0

u and H̃0
d ) and the neutral gauginos (B̃, W̃ 0) combine

to form four mass eigenstates called neutralinos. The charged higgsinos (H̃+
u and H̃−

d ) and winos (W̃+

and W̃−) mix to form two mass eigenstates with charge ±1 called charginos. We will denote† the
neutralino and chargino mass eigenstates by Ñi (i = 1, 2, 3, 4) and C̃±

i (i = 1, 2). By convention, these
are labeled in ascending order, so that m
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Ñ2
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Ñ3
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Ñ4
and m

C̃1
< m

C̃2
. The lightest

neutralino, Ñ1, is usually assumed to be the LSP, unless there is a lighter gravitino or unless R-parity
is not conserved, because it is the only MSSM particle that can make a good dark matter candidate.
In this subsection, we will describe the mass spectrum and mixing of the neutralinos and charginos in
the MSSM.

In the gauge-eigenstate basis ψ0 = (B̃, W̃ 0, H̃0
d , H̃

0
u), the neutralino mass part of the Lagrangian is
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The entries M1 and M2 in this matrix come directly from the MSSM soft Lagrangian [see eq. (6.3.1)],
while the entries −µ are the supersymmetric higgsino mass terms [see eq. (6.1.4)]. The terms propor-
tional to g, g′ are the result of Higgs-higgsino-gaugino couplings [see eq. (3.4.9) and Figure 3.3g,h], with
the Higgs scalars replaced by their VEVs [eqs. (8.1.6), (8.1.7)]. This can also be written as
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M1 0 −cβ sW mZ sβ sW mZ

0 M2 cβ cW mZ −sβ cW mZ

−cβ sW mZ cβ cW mZ 0 −µ
sβ sW mZ −sβ cW mZ −µ 0

⎞

⎟⎟⎠ . (8.2.3)

Here we have introduced abbreviations sβ = sin β, cβ = cos β, sW = sin θW , and cW = cos θW . The
mass matrix M

Ñ
can be diagonalized by a unitary matrix N to obtain mass eigenstates:

Ñi = Nijψ
0
j , (8.2.4)

†Other common notations use χ̃0
i or Z̃i for neutralinos, and χ̃±

i or W̃±
i for charginos.
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Ñ
ψ0 + c.c., (8.2.1)

where

M
Ñ
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Ñ

=

⎛

⎜⎜⎝

M1 0 −cβ sW mZ sβ sW mZ

0 M2 cβ cW mZ −sβ cW mZ

−cβ sW mZ cβ cW mZ 0 −µ
sβ sW mZ −sβ cW mZ −µ 0

⎞

⎟⎟⎠ . (8.2.3)

Here we have introduced abbreviations sβ = sin β, cβ = cos β, sW = sin θW , and cW = cos θW . The
mass matrix M

Ñ
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values of the parameters; in particular the above labeling of Ñ1 and Ñ2 assumes M1 < M2 ≪ |µ|. This
limit, leading to a bino-like neutralino LSP, often emerges from MSUGRA boundary conditions on the
soft parameters, which tend to require it in order to get correct electroweak symmetry breaking.

The chargino spectrum can be analyzed in a similar way. In the gauge-eigenstate basis ψ± =
(W̃+, H̃+

u , W̃−, H̃−
d ), the chargino mass terms in the Lagrangian are

Lchargino mass = −1

2
(ψ±)TM

C̃
ψ± + c.c. (8.2.12)

where, in 2× 2 block form,
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=
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with
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=
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The mass eigenstates are related to the gauge eigenstates by two unitary 2×2 matrices U and V

according to
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)
,
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. (8.2.15)

Note that the mixing matrix for the positively charged left-handed fermions is different from that for
the negatively charged left-handed fermions. They are chosen so that

U∗XV−1 =
(
m

C̃1
0

0 m
C̃2

)
, (8.2.16)

with positive real entries m
C̃i
. Because these are only 2×2 matrices, it is not hard to solve for the

masses explicitly:

m2
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=

1

2

[
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W
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These are the (doubly degenerate) eigenvalues of the 4 × 4 matrix M
†
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M
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, or equivalently the eigen-

values of X†X, since

VX†XV−1 = U∗XX†UT =

(
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0

0 m2
C̃2

)

. (8.2.18)

(But, they are not the squares of the eigenvalues of X.) In the limit of eq. (8.2.7) with real M2 and µ,
the chargino mass eigenstates consist of a wino-like C̃±

1 and and a higgsino-like C̃±
2 , with masses

m
C̃1

= M2 −
m2

W (M2 + µ sin 2β)

µ2 −M2
2

+ . . . (8.2.19)

m
C̃2

= |µ|+ m2
W I(µ+M2 sin 2β)

µ2 −M2
2

+ . . . . (8.2.20)

Here again the labeling assumes M2 < |µ|, and I is the sign of µ. Amusingly, C̃1 is nearly degenerate
with the neutralino Ñ2 in the approximation shown, but that is not an exact result. Their higgsino-like
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VX†XV−1 = U∗XX†UT =

(
m2

C̃1

0

0 m2
C̃2

)

. (8.2.18)

(But, they are not the squares of the eigenvalues of X.) In the limit of eq. (8.2.7) with real M2 and µ,
the chargino mass eigenstates consist of a wino-like C̃±

1 and and a higgsino-like C̃±
2 , with masses

m
C̃1

= M2 −
m2

W (M2 + µ sin 2β)

µ2 −M2
2

+ . . . (8.2.19)

m
C̃2

= |µ|+ m2
W I(µ+M2 sin 2β)

µ2 −M2
2

+ . . . . (8.2.20)

Here again the labeling assumes M2 < |µ|, and I is the sign of µ. Amusingly, C̃1 is nearly degenerate
with the neutralino Ñ2 in the approximation shown, but that is not an exact result. Their higgsino-like
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mass of the top quark, the QCD coupling, and other details. In principle, there is also a constraint on
cos β if one requires that yb and yτ do not become nonperturbatively large. This gives a rough upper
bound of tan β <∼ 65. However, this is complicated somewhat by the fact that the bottom quark mass
gets significant one-loop non-QCD corrections in the large tan β limit [205]. One can obtain a stronger
upper bound on tan β in some models where m2

Hu
= m2

Hd
at the input scale, by requiring that yb does

not significantly exceed yt. [Otherwise, Xb would be larger than Xt in eqs. (6.5.39) and (6.5.40), so
one would expect m2

Hd
< m2

Hu
at the electroweak scale, and the minimum of the potential would have

⟨H0
d ⟩ > ⟨H0

u⟩. This would be a contradiction with the supposition that tan β is large.] The parameter
tan β also directly impacts the masses and mixings of the MSSM sparticles, as we will see below.

8.2 Neutralinos and charginos

The higgsinos and electroweak gauginos mix with each other because of the effects of electroweak
symmetry breaking. The neutral higgsinos (H̃0

u and H̃0
d ) and the neutral gauginos (B̃, W̃ 0) combine

to form four mass eigenstates called neutralinos. The charged higgsinos (H̃+
u and H̃−

d ) and winos (W̃+

and W̃−) mix to form two mass eigenstates with charge ±1 called charginos. We will denote† the
neutralino and chargino mass eigenstates by Ñi (i = 1, 2, 3, 4) and C̃±

i (i = 1, 2). By convention, these
are labeled in ascending order, so that m

Ñ1
< m

Ñ2
< m

Ñ3
< m

Ñ4
and m

C̃1
< m

C̃2
. The lightest

neutralino, Ñ1, is usually assumed to be the LSP, unless there is a lighter gravitino or unless R-parity
is not conserved, because it is the only MSSM particle that can make a good dark matter candidate.
In this subsection, we will describe the mass spectrum and mixing of the neutralinos and charginos in
the MSSM.

In the gauge-eigenstate basis ψ0 = (B̃, W̃ 0, H̃0
d , H̃

0
u), the neutralino mass part of the Lagrangian is

Lneutralino mass = −1

2
(ψ0)TM

Ñ
ψ0 + c.c., (8.2.1)

where

M
Ñ

=

⎛

⎜⎜⎝

M1 0 −g′vd/
√
2 g′vu/

√
2

0 M2 gvd/
√
2 −gvu/

√
2

−g′vd/
√
2 gvd/

√
2 0 −µ

g′vu/
√
2 −gvu/

√
2 −µ 0

⎞

⎟⎟⎠ . (8.2.2)

The entries M1 and M2 in this matrix come directly from the MSSM soft Lagrangian [see eq. (6.3.1)],
while the entries −µ are the supersymmetric higgsino mass terms [see eq. (6.1.4)]. The terms propor-
tional to g, g′ are the result of Higgs-higgsino-gaugino couplings [see eq. (3.4.9) and Figure 3.3g,h], with
the Higgs scalars replaced by their VEVs [eqs. (8.1.6), (8.1.7)]. This can also be written as

M
Ñ

=

⎛

⎜⎜⎝

M1 0 −cβ sW mZ sβ sW mZ

0 M2 cβ cW mZ −sβ cW mZ

−cβ sW mZ cβ cW mZ 0 −µ
sβ sW mZ −sβ cW mZ −µ 0

⎞

⎟⎟⎠ . (8.2.3)

Here we have introduced abbreviations sβ = sin β, cβ = cos β, sW = sin θW , and cW = cos θW . The
mass matrix M

Ñ
can be diagonalized by a unitary matrix N to obtain mass eigenstates:

Ñi = Nijψ
0
j , (8.2.4)

†Other common notations use χ̃0
i or Z̃i for neutralinos, and χ̃±

i or W̃±
i for charginos.
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values of the parameters; in particular the above labeling of Ñ1 and Ñ2 assumes M1 < M2 ≪ |µ|. This
limit, leading to a bino-like neutralino LSP, often emerges from MSUGRA boundary conditions on the
soft parameters, which tend to require it in order to get correct electroweak symmetry breaking.

The chargino spectrum can be analyzed in a similar way. In the gauge-eigenstate basis ψ± =
(W̃+, H̃+

u , W̃−, H̃−
d ), the chargino mass terms in the Lagrangian are

Lchargino mass = −1

2
(ψ±)TM

C̃
ψ± + c.c. (8.2.12)

where, in 2× 2 block form,

M
C̃

=
(
0 XT

X 0

)
, (8.2.13)

with

X =
(
M2 gvu
gvd µ

)
=
(

M2

√
2sβmW√

2cβmW µ

)
. (8.2.14)

The mass eigenstates are related to the gauge eigenstates by two unitary 2×2 matrices U and V

according to
(
C̃+
1

C̃+
2

)
= V

(
W̃+

H̃+
u

)
,

(
C̃−
1

C̃−
2

)
= U

(
W̃−

H̃−
d

)
. (8.2.15)

Note that the mixing matrix for the positively charged left-handed fermions is different from that for
the negatively charged left-handed fermions. They are chosen so that

U∗XV−1 =
(
m

C̃1
0

0 m
C̃2

)
, (8.2.16)

with positive real entries m
C̃i
. Because these are only 2×2 matrices, it is not hard to solve for the

masses explicitly:

m2
C̃1
,m2

C̃2
=

1

2

[
|M2|2 + |µ|2 + 2m2

W

∓
√
(|M2|2 + |µ|2 + 2m2

W )2 − 4|µM2 −m2
W sin 2β|2

]
. (8.2.17)

These are the (doubly degenerate) eigenvalues of the 4 × 4 matrix M
†
C̃
M

C̃
, or equivalently the eigen-

values of X†X, since

VX†XV−1 = U∗XX†UT =

(
m2

C̃1

0

0 m2
C̃2

)

. (8.2.18)

(But, they are not the squares of the eigenvalues of X.) In the limit of eq. (8.2.7) with real M2 and µ,
the chargino mass eigenstates consist of a wino-like C̃±

1 and and a higgsino-like C̃±
2 , with masses

m
C̃1

= M2 −
m2

W (M2 + µ sin 2β)

µ2 −M2
2

+ . . . (8.2.19)

m
C̃2

= |µ|+ m2
W I(µ+M2 sin 2β)

µ2 −M2
2

+ . . . . (8.2.20)

Here again the labeling assumes M2 < |µ|, and I is the sign of µ. Amusingly, C̃1 is nearly degenerate
with the neutralino Ñ2 in the approximation shown, but that is not an exact result. Their higgsino-like
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mass of the top quark, the QCD coupling, and other details. In principle, there is also a constraint on
cos β if one requires that yb and yτ do not become nonperturbatively large. This gives a rough upper
bound of tan β <∼ 65. However, this is complicated somewhat by the fact that the bottom quark mass
gets significant one-loop non-QCD corrections in the large tan β limit [205]. One can obtain a stronger
upper bound on tan β in some models where m2

Hu
= m2

Hd
at the input scale, by requiring that yb does

not significantly exceed yt. [Otherwise, Xb would be larger than Xt in eqs. (6.5.39) and (6.5.40), so
one would expect m2

Hd
< m2

Hu
at the electroweak scale, and the minimum of the potential would have

⟨H0
d ⟩ > ⟨H0

u⟩. This would be a contradiction with the supposition that tan β is large.] The parameter
tan β also directly impacts the masses and mixings of the MSSM sparticles, as we will see below.

8.2 Neutralinos and charginos

The higgsinos and electroweak gauginos mix with each other because of the effects of electroweak
symmetry breaking. The neutral higgsinos (H̃0

u and H̃0
d ) and the neutral gauginos (B̃, W̃ 0) combine

to form four mass eigenstates called neutralinos. The charged higgsinos (H̃+
u and H̃−

d ) and winos (W̃+

and W̃−) mix to form two mass eigenstates with charge ±1 called charginos. We will denote† the
neutralino and chargino mass eigenstates by Ñi (i = 1, 2, 3, 4) and C̃±

i (i = 1, 2). By convention, these
are labeled in ascending order, so that m

Ñ1
< m

Ñ2
< m

Ñ3
< m

Ñ4
and m

C̃1
< m

C̃2
. The lightest

neutralino, Ñ1, is usually assumed to be the LSP, unless there is a lighter gravitino or unless R-parity
is not conserved, because it is the only MSSM particle that can make a good dark matter candidate.
In this subsection, we will describe the mass spectrum and mixing of the neutralinos and charginos in
the MSSM.

In the gauge-eigenstate basis ψ0 = (B̃, W̃ 0, H̃0
d , H̃

0
u), the neutralino mass part of the Lagrangian is

Lneutralino mass = −1

2
(ψ0)TM

Ñ
ψ0 + c.c., (8.2.1)

where

M
Ñ

=

⎛

⎜⎜⎝

M1 0 −g′vd/
√
2 g′vu/

√
2

0 M2 gvd/
√
2 −gvu/

√
2

−g′vd/
√
2 gvd/

√
2 0 −µ

g′vu/
√
2 −gvu/

√
2 −µ 0

⎞

⎟⎟⎠ . (8.2.2)

The entries M1 and M2 in this matrix come directly from the MSSM soft Lagrangian [see eq. (6.3.1)],
while the entries −µ are the supersymmetric higgsino mass terms [see eq. (6.1.4)]. The terms propor-
tional to g, g′ are the result of Higgs-higgsino-gaugino couplings [see eq. (3.4.9) and Figure 3.3g,h], with
the Higgs scalars replaced by their VEVs [eqs. (8.1.6), (8.1.7)]. This can also be written as

M
Ñ

=

⎛

⎜⎜⎝

M1 0 −cβ sW mZ sβ sW mZ

0 M2 cβ cW mZ −sβ cW mZ

−cβ sW mZ cβ cW mZ 0 −µ
sβ sW mZ −sβ cW mZ −µ 0

⎞

⎟⎟⎠ . (8.2.3)

Here we have introduced abbreviations sβ = sin β, cβ = cos β, sW = sin θW , and cW = cos θW . The
mass matrix M

Ñ
can be diagonalized by a unitary matrix N to obtain mass eigenstates:

Ñi = Nijψ
0
j , (8.2.4)

†Other common notations use χ̃0
i or Z̃i for neutralinos, and χ̃±

i or W̃±
i for charginos.
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soft parameters, which tend to require it in order to get correct electroweak symmetry breaking.
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Note that the mixing matrix for the positively charged left-handed fermions is different from that for
the negatively charged left-handed fermions. They are chosen so that

U∗XV−1 =
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)
, (8.2.16)

with positive real entries m
C̃i
. Because these are only 2×2 matrices, it is not hard to solve for the

masses explicitly:
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]
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These are the (doubly degenerate) eigenvalues of the 4 × 4 matrix M
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, or equivalently the eigen-

values of X†X, since
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(But, they are not the squares of the eigenvalues of X.) In the limit of eq. (8.2.7) with real M2 and µ,
the chargino mass eigenstates consist of a wino-like C̃±
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Why electroweakinos?

Naturalness: Higgsino mass is related to the Z mass

(say, <⇠ 1 TeV), the predicted mass of the Higgs bo-
son is too small to be compatible with the ATLAS and
CMS observation [77, 78] of a 125 GeV Higgs-like bo-
son (e.g. [28, 37, 40, 79–91]). On the other hand, light
third generation sparticles can significantly modify the
detailed properties – production cross section and decay
rates – of the lightest Higgs boson [92–105].

We consider the e↵ects of Natural Supersymmetry on
the detailed properties of the lightest Higgs boson. Here
we are not interested in maximizing a particular decay
channel or fitting to the existing Higgs results, but in-
stead we endeavor to simply understand the characteris-
tics that Natural Supersymmetry has on Higgs physics.
Our main result is to overlay the modifications to the
Higgs physics onto the allowed parameter space of Natu-
ral Supersymmetry. Two interesting regions emerge. In
the “compressed wedge” region where (mq̃�|µ|)/mq̃ ⌧ 1
and mq̃ can be small, the e↵ects on Higgs physics are to
enhance the inclusive (gluon-fusion dominated) cross sec-
tion �incl

MSSM by 10-30% simultaneous with a slight reduc-
tion of BR(h ! ��)MSSM by up to 5%. By contrast, in
the “kinematic limit” region where mq̃ >⇠ 600-750 GeV,
there is a slight enhancement of BR(h ! ��)MSSM by up
to 5%, with the inclusive (gluon-fusion dominated) cross
section �incl

MSSM within a few % of the Standard Model re-
sult. While the experimental situation the LHC collabo-
rations is not yet settled, it is already clear that these two
regions lead to distinctly di↵erent e↵ects on Higgs prop-
erties that can be probed with ' 10% measurements.

Given light stops and sbottoms, we must consider the
supersymmetric prediction for the lightest Higgs boson
mass. We assert that Natural Supersymmetry – in the
MSSM – is simply incompatible with obtaining a lightest
Higgs boson mass consistent with the LHC data. This
point has been emphasized in some recent work, for ex-
ample [81, 106, 107]. Hence, we do not restrict the third
generation squark masses to obtain a given lightest Higgs
boson mass. Instead, we assume there is another contri-
bution to the quartic coupling that is su�cient to aug-
ment the MSSM contributions, resulting in a Higgs mass
that matches experiment, mh ' 125 GeV. Not specifying
this contribution would seem to be fatal flaw of our anal-
ysis. We show that simple extensions of the MSSM, in
particular the next-to-minimal supersymmetric standard
model (NMSSM), can give both a su�cient boost to the
quartic coupling with negligible e↵ects on the Higgsino
mass spectrum and the decay chains that we consider
here. Specific examples of NMSSM parameter choices
that realize our assertion are given in Appendix A.

We do not consider the gluino in this paper. The
gluino contributions to the electroweak symmetry break-
ing scale may be significant in the MSSM, given the
existing searches that suggest the gluino must be heavier
than 1-1.3 TeV, depending on the search strategy [46–
49, 108]. However, the size of the gluino contribution to
electroweak symmetry breaking is model-dependent: A
Dirac gluino has a substantially smaller contribution to
the electroweak symmetry breaking scale compared with

a Majorana gluino, when the leading-log enhancements
are included, allowing a Dirac gluino to be substantially
heavier [109–111]. In addition, the search strategies for
a gluino depend on its Majorana or Dirac character.
One of the most important search strategies – involving
same-sign dileptons (such as [46, 49]) does not provide a
constraint on a Dirac gluino.

II. MASS HIERARCHY IN NATURAL
SUPERSYMMETRY

A. Contributions to the Electroweak Scale

In the minimal supersymmetric standard model
(MSSM) the electroweak symmetry breaking scale is de-
termined by, at tree-level [112],

1

2
M2

Z =
tan2 � + 1

tan2 � � 1

m2
Hd

� m2
Hu

2
�1

2
m2

Hu
�1

2
m2

Hd
�|µ|2 .

(1)
In saying “contribution to the electroweak scale”, it is
understood that the supersymmetric and supersymme-
try breaking parameters are adjusted to obtain the value
already determined by experiment. Here we are inter-
ested in the relative size of |µ| and the loop corrections
to the electroweak breaking scale, i.e., MZ .
For tan� very near 1, the coe�cient of the first term in

Eq. (1) becomes large, because the D-flat direction in the
scalar potential is not lifted, and thus implies increased
sensitivity to the supersymmetric parameters. The sen-
sitivity is most easily understood by eliminating depen-
dence on m2

Hd
using the tree-level relation [112]

m2
A = 2|µ|2 + m2

Hu
+ m2

Hd
(2)

to obtain

1

2
M2

Z =
1

tan2 � � 1
m2

A � tan2 � + 1

tan2 � � 1

�
m2

Hu
+ |µ|2� .

(3)
At large tan�, however, Eq. (3) simplifies to

1

2
M2

Z = �m2
Hu

� |µ|2 (4)

and eliminates dependence on m2
A. Generally, we have

taken tan� = 10 for the analyses to follow, and thus
the heavy Higgs scalars that acquire masses near mA can
be readily decoupled from our analysis. However, the
smaller tan� region reappears in our discussion of the
NMSSM in Appendix A, where the the relative contribu-
tions to the electroweak symmetry breaking scale become
more complicated for the NMSSM scalar potential.
With Eq. (4) in mind, we can compare the relative

importance of di↵erent contributions to the electroweak
symmetry breaking scale by normalizing to M2

Z/2 [113]

�(a2) ⌘
����

a2

M2
Z/2

���� , (5)
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Dark Matter: lightest superparticle is stable, can be DM

“Well-tempered electroweakino” scenario

right amount of DM achieved from admixtures 
of electroweakinos, mass ~ 100 GeV - TeV

[Arkani-Hamed, Delgado, Giudice ’06]
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Associated chargino-neutralino production (in particular in the WZ+MET final state) benefits 
from combined analysis of 2 and 3 leptons as featured by CMS including also tau leptons 
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 leptons become inefficient to trigger upon (25 GeV for single 

lepton trigger, 17 GeV/8 GeV for 2-lepton)…  
Doesn’t improve at 14 TeV

struggle when the states are nearly degenerate (mχ2 ∼ mχ± ∼ mχ1)
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Electroweak neutralino, chargino and slepton pair production 
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ATLAS-CONF-2013-035, ATLAS-CONF-2013-028 

Associated chargino-neutralino production (in particular in the WZ+MET final state) benefits 
from combined analysis of 2 and 3 leptons as featured by CMS including also tau leptons 
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Monojet searches

model independent, ideal for degenerate spectra

less to distinguish signal from background; limits degrade as 
the invisible-SM interaction becomes less contact-like
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Figure 1: Dark matter production in association with a single jet in a hadron collider.

3.1. Comparing Various Mono-Jet Analyses

Dark matter pair production through a diagram like figure 1 is one of the leading channels
for dark matter searches at hadron colliders [3, 4]. The signal would manifest itself as an excess
of jets plus missing energy (j + /ET ) events over the Standard Model background, which consists
mainly of (Z � ⇤⇤)+ j and (W � �inv⇤)+ j final states. In the latter case the charged lepton � is
lost, as indicated by the superscript “inv”. Experimental studies of j + /ET final states have been
performed by CDF [22], CMS [23] and ATLAS [24, 25], mostly in the context of Extra Dimensions.

Our analysis will, for the most part, be based on the ATLAS search [25] which looked for mono-
jets in 1 fb�1 of data, although we will also compare to the earlier CMS analysis [23], which used
36 pb�1 of integrated luminosity. The ATLAS search contains three separate analyses based on
successively harder pT cuts, the major selection criteria from each analysis that we apply in our
analysis are given below.3

LowPT Selection requires /ET > 120 GeV, one jet with pT (j1) > 120 GeV, |�(j1)| < 2, and events
are vetoed if they contain a second jet with pT (j2) > 30 GeV and |�(j2)| < 4.5.

HighPT Selection requires /ET > 220 GeV, one jet with pT (j1) > 250 GeV, |�(j1)| < 2, and events
are vetoed if there is a second jet with |�(j2)| < 4.5 and with either pT (j2) > 60 GeV or
�⌅(j2, /ET ) < 0.5. Any further jets with |�(j2)| < 4.5 must have pT (j3) < 30 GeV.

veryHighPT Selection requires /ET > 300 GeV, one jet with pT (j1) > 350 GeV, |�(j1)| < 2, and
events are vetoed if there is a second jet with |�(j2)| < 4.5 and with either pT (j2) > 60 GeV
or �⌅(j2, /ET ) < 0.5. Any further jets with |�(j2)| < 4.5 must have pT (j3) < 30 GeV.

In all cases events are vetoed if they contain any hard leptons, defined for electrons as |�(e)| < 2.47
and pT (e) > 20 GeV and for muons as |�(µ)| < 2.4 and pT (µ) > 10 GeV.

The cuts used by CMS are similar to those of the LowPT ATLAS analysis. Mono-jet events
are selected by requiring /ET > 150 GeV and one jet with pT (j1) > 110 GeV and pseudo-rapidity
|�(j1)| < 2.4. A second jet with pT (j2) > 30 GeV is allowed if the azimuthal angle it forms with
the leading jet is �⌅(j1, j2) < 2.0 radians. Events with more than two jets with pT > 30 GeV are
vetoed, as are events containing charged leptons with pT > 10 GeV. The number of expected and
observed events in the various searches is shown in table I.

3 Both ATLAS and CMS impose additional isolation cuts, which we do not mimic in our analysis for simplicity and
since they would not have a large impact on our results.
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Light Mediators
For all but the lightest mediators EFT is good for direct 
detection
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can enhance the production cross section once the mass of the s-channel mediator is within the
kinematic range and can be produced on-shell. This enhancement is particularly strong when the
mediator has a small decay width �, though it should be noted that within our assumptions � is
bounded from below due to the open decay channels to jets and to dark matter.

On the other hand, colliders have a relative disadvantage compared to direct detection experi-
ments in the light mediator case. The reason is that, from dimensional analysis, the cross section
for the collider production process pp ⇧ ⌅̄⌅+X scales as,

⇤(pp ⇧ ⌅̄⌅+X) ⇤
g2qg

2
�

(q2 �M2)2 + �2/4
E2 , (12)

where E is of order the partonic center-of-mass energy, M is the mass of the s-channel mediator
and q is the four momentum flowing through this mediator. At the 7 TeV LHC,

�
q2 has a broad

distribution which is peaked at a few hundred GeV and falls slowly above. The mediator’s width
is denoted by �, and gq, g� are its couplings to quarks and dark matter, respectively. The direct
detection cross section, on the other hand, is approximately

⇤(⌅N ⇧ ⌅N) ⇤
g2qg

2
�

M4
µ2
�N , (13)

with the reduced mass µ�N of the dark matter and the target nucleus.
When M2 ⌅ q2, the limit that the collider sets on g2�g

2
q becomes independent of M , whereas

the limit on g2�g
2
q from direct detection experiments continues to become stronger for smaller M .

In other words, the collider limit on ⇤(⌅N ⇧ ⌅N) becomes weaker as M becomes smaller. On
the other hand, when m� < M/2 and the condition

�
q2 ⌃ M can be fulfilled, collider production

of ⌅̄⌅+X experiences resonant enhancement. Improved constraints on ⇥ can be expected in that
regime.

In figure 7, we investigate the dependence of the ATLAS bounds on the mediator mass M more
quantitatively including both on-shell and o⇤-shell production. Even though dark matter–quark
interactions can now no longer be described by e⇤ective field theory in a collider environment, we
still use ⇥ ⇥ M/

⌥
g�gq as a measure for the strength of the collider constraint, since ⇥ is the

quantity that determines the direct detection cross section. As before, we have used the cuts from
the ATLAS veryHighPt analysis (see section 3). We have assumed vector interactions with equal
couplings of the intermediate vector boson to all quark flavors.

At very large M (& 5 TeV), the limits on ⇥ in figure 7 asymptote to those obtained in the
e⇤ective theory framework. For 2m� ⌅ M . 5 TeV, resonant enhancement leads to a significant
improvement in the limit since the mediator can now be produced on-shell, so that the primary
parton–parton collision now leads to a two-body rather than three-body final state. As expected
from equation (12), the strongest enhancement occurs when the mediator is narrow. In figure 7,
this is illustrated by the upper end of the colored bands, which corresponds to � = M/8⇥.6 The
shape of the peaks in figure 7 is determined by the interplay of parton distribution functions, which
suppress the direct production of a heavy mediator, and the explicit proportionality of ⇥ to M
according to its definition. Below M ⌃ 2m�, the mediator can no longer decay to ⌅̄⌅, but only to
q̄q, so in this mass range, it can only contribute to the mono-jet sample if it is produced o⇤-shell.
In that regime, the limit on ⇥ is rather weak (even though the limit on g2�g

2
q is independent of M

there as discussed above), and the dependence on � disappears.

6 � = M/8� corresponds to a mediator that can annihilate into only one quark flavor and helicity and has couplings
g�gq = 1. Since in figure 7, we have assumed couplings to all quark helicities and flavors (collider production
is dominated by coupling to up-quarks though), and since g�gq > 1 in parts of the plot (see dashed contours),
� = M/8� should be regarded as a lower limit on the mediator width.
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shape of the peaks in figure 7 is determined by the interplay of parton distribution functions, which
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FIG. 12. Leading order Higgsino plus jet cross sections at 8 TeV (left) and 14 TeV (right) as a function of the Higgsino
mass for several di↵erent jet pT cuts. The factorization/renormalization scale was taken to be m��/ 0.5m��/ 2m��

in the solid/dashed/dotted lines of each color, and all calculations use MSTW2008lo parton distribution functions.
Note the “kink” in the plot near m� = 70 GeV is due merely to numerical sampling.

IV. HUNTING DEGENERATE HIGGSINOS: MONOJET LIMITS

We now turn to hunting for quasi-degenerate Higgsinos with the most di�cult case, where M1,M2

are so large that the splitting among the Higgsinos is . few GeV and the particles emitted in the de-
cay cascades are so soft that they cannot pass ATLAS/CMS object identification requirements, let alone
the trigger requirements. For all intents and purposes, the entire Higgsino sector is invisible in this case;
pp ! �+

1 �
�
1 , pp ! �+

1 �
0
1, pp ! �+

1 �
0
2 all look the same and can be combined into a single process pp ! ��.

The degree of degeneracy is limited by the fact that the Higgsino decays need to be prompt in order for
pp ! ��+j to mimic a monojet signal. If the Higgsino decay lengths become macroscopic, additional search
strategies that rely on displaced tracks or stubs can be used [49]. The requirement of prompt decays sets a
lower limit on the inter-Higgsino splitting of roughly ⇠ 0.3GeV.

Pair production of degenerate Higgsinos looks just like DM pair production, except the mediator �,W,Z is
light, the couplings are EW strength, and the Lorentz structure is dictated by the weak interaction: vector-
vector and axial-axial operators only. To get an idea for the typical Higgsino plus jet rates, the cross sections
for �(pp ! ��+ j) for several di↵erent jet pT are shown in Fig. 12 as a function of the Higgsino mass. The
signal cross sections were calculated assuming an exactly degenerate multiplet of Higgsinos, i.e. the four
states pair up into two Dirac fermions, one charged and one neutral. These cross sections were calculated
at leading order using MSTW2008lo [50] parton distribution functions and a factorization/renormalization
scale of µ2 = m2

��, the invariant mass of the Higgsino pair system.

We cannot rescale bounds from existing monojet searches since Higgsino pair production proceeds through
a light mediator (W/Z) rather than a contact interaction. In order to reinterpret CMS/ATLAS monojet
bounds in terms of Higgsino pair production, we redo the existing analysis on Higgsino plus jet events and
compare with the observed number of events in each bin. However, because Higgsinos are not produced from
a contact interaction, we do not need to worry about large jet-pT cuts invalidating our e↵ective theory.

While the details of the CMS and ATLAS monojet searches di↵er slightly, they have the same basic
strategy: clean events containing a single hard jet and substantial missing energy, divided into various
pT,j and /ET bins, then compared with the standard model expectation in each bin. The standard model
background comes predominantly from W (`⌫) + j and Z(⌫⌫̄) + j events. To get a rough idea of the current
bounds, we apply the same analysis cuts (shown in full detail in Appendix A) the experiments use to parton-

8 TeV

recasting mono-jet searches on  
 8 TeV data, limits are

mχ ≳ 80 GeV

no better than LEPII bound!

projected to 14 TeV, high L, limits still feeble

[Han, Kribs, AM, Menon 1401.1235]
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LHC limits are weakest when states are nearly degenerate

but approximately-degenerate spectra are exactly what is 
required for well-tempered scenarios to fit DM abundance

improved searches needed
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One possibility: Improve mono-jet searches

the problem with tri-lepton searches is triggering; solve this 
by requiring hard initial-state jet, as in mono-jet

once triggered upon, event can be analyzed using lower, 
off-line thresholds (≳ 7 GeV for e±, ≳ 3 GeV for μ±)
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Figure 1: Dark matter production in association with a single jet in a hadron collider.

3.1. Comparing Various Mono-Jet Analyses

Dark matter pair production through a diagram like figure 1 is one of the leading channels
for dark matter searches at hadron colliders [3, 4]. The signal would manifest itself as an excess
of jets plus missing energy (j + /ET ) events over the Standard Model background, which consists
mainly of (Z � ⇤⇤)+ j and (W � �inv⇤)+ j final states. In the latter case the charged lepton � is
lost, as indicated by the superscript “inv”. Experimental studies of j + /ET final states have been
performed by CDF [22], CMS [23] and ATLAS [24, 25], mostly in the context of Extra Dimensions.

Our analysis will, for the most part, be based on the ATLAS search [25] which looked for mono-
jets in 1 fb�1 of data, although we will also compare to the earlier CMS analysis [23], which used
36 pb�1 of integrated luminosity. The ATLAS search contains three separate analyses based on
successively harder pT cuts, the major selection criteria from each analysis that we apply in our
analysis are given below.3

LowPT Selection requires /ET > 120 GeV, one jet with pT (j1) > 120 GeV, |�(j1)| < 2, and events
are vetoed if they contain a second jet with pT (j2) > 30 GeV and |�(j2)| < 4.5.

HighPT Selection requires /ET > 220 GeV, one jet with pT (j1) > 250 GeV, |�(j1)| < 2, and events
are vetoed if there is a second jet with |�(j2)| < 4.5 and with either pT (j2) > 60 GeV or
�⌅(j2, /ET ) < 0.5. Any further jets with |�(j2)| < 4.5 must have pT (j3) < 30 GeV.

veryHighPT Selection requires /ET > 300 GeV, one jet with pT (j1) > 350 GeV, |�(j1)| < 2, and
events are vetoed if there is a second jet with |�(j2)| < 4.5 and with either pT (j2) > 60 GeV
or �⌅(j2, /ET ) < 0.5. Any further jets with |�(j2)| < 4.5 must have pT (j3) < 30 GeV.

In all cases events are vetoed if they contain any hard leptons, defined for electrons as |�(e)| < 2.47
and pT (e) > 20 GeV and for muons as |�(µ)| < 2.4 and pT (µ) > 10 GeV.

The cuts used by CMS are similar to those of the LowPT ATLAS analysis. Mono-jet events
are selected by requiring /ET > 150 GeV and one jet with pT (j1) > 110 GeV and pseudo-rapidity
|�(j1)| < 2.4. A second jet with pT (j2) > 30 GeV is allowed if the azimuthal angle it forms with
the leading jet is �⌅(j1, j2) < 2.0 radians. Events with more than two jets with pT > 30 GeV are
vetoed, as are events containing charged leptons with pT > 10 GeV. The number of expected and
observed events in the various searches is shown in table I.

3 Both ATLAS and CMS impose additional isolation cuts, which we do not mimic in our analysis for simplicity and
since they would not have a large impact on our results.
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mediator has a small decay width �, though it should be noted that within our assumptions � is
bounded from below due to the open decay channels to jets and to dark matter.

On the other hand, colliders have a relative disadvantage compared to direct detection experi-
ments in the light mediator case. The reason is that, from dimensional analysis, the cross section
for the collider production process pp ⇧ ⌅̄⌅+X scales as,
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and q is the four momentum flowing through this mediator. At the 7 TeV LHC,
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distribution which is peaked at a few hundred GeV and falls slowly above. The mediator’s width
is denoted by �, and gq, g� are its couplings to quarks and dark matter, respectively. The direct
detection cross section, on the other hand, is approximately
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with the reduced mass µ�N of the dark matter and the target nucleus.
When M2 ⌅ q2, the limit that the collider sets on g2�g

2
q becomes independent of M , whereas

the limit on g2�g
2
q from direct detection experiments continues to become stronger for smaller M .

In other words, the collider limit on ⇤(⌅N ⇧ ⌅N) becomes weaker as M becomes smaller. On
the other hand, when m� < M/2 and the condition

�
q2 ⌃ M can be fulfilled, collider production

of ⌅̄⌅+X experiences resonant enhancement. Improved constraints on ⇥ can be expected in that
regime.

In figure 7, we investigate the dependence of the ATLAS bounds on the mediator mass M more
quantitatively including both on-shell and o⇤-shell production. Even though dark matter–quark
interactions can now no longer be described by e⇤ective field theory in a collider environment, we
still use ⇥ ⇥ M/

⌥
g�gq as a measure for the strength of the collider constraint, since ⇥ is the

quantity that determines the direct detection cross section. As before, we have used the cuts from
the ATLAS veryHighPt analysis (see section 3). We have assumed vector interactions with equal
couplings of the intermediate vector boson to all quark flavors.

At very large M (& 5 TeV), the limits on ⇥ in figure 7 asymptote to those obtained in the
e⇤ective theory framework. For 2m� ⌅ M . 5 TeV, resonant enhancement leads to a significant
improvement in the limit since the mediator can now be produced on-shell, so that the primary
parton–parton collision now leads to a two-body rather than three-body final state. As expected
from equation (12), the strongest enhancement occurs when the mediator is narrow. In figure 7,
this is illustrated by the upper end of the colored bands, which corresponds to � = M/8⇥.6 The
shape of the peaks in figure 7 is determined by the interplay of parton distribution functions, which
suppress the direct production of a heavy mediator, and the explicit proportionality of ⇥ to M
according to its definition. Below M ⌃ 2m�, the mediator can no longer decay to ⌅̄⌅, but only to
q̄q, so in this mass range, it can only contribute to the mono-jet sample if it is produced o⇤-shell.
In that regime, the limit on ⇥ is rather weak (even though the limit on g2�g

2
q is independent of M

there as discussed above), and the dependence on � disappears.
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g�gq = 1. Since in figure 7, we have assumed couplings to all quark helicities and flavors (collider production
is dominated by coupling to up-quarks though), and since g�gq > 1 in parts of the plot (see dashed contours),
� = M/8� should be regarded as a lower limit on the mediator width.
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One possibility: Improve mono-jet searches

the problem with tri-lepton searches is triggering; solve this 
by requiring hard initial-state jet, as in mono-jet

once triggered upon, event can be analyzed using lower, 
off-line thresholds (≳ 7 GeV for e±, ≳ 3 GeV for μ±)

4

q

q̄

�

�̄

Figure 1: Dark matter production in association with a single jet in a hadron collider.

3.1. Comparing Various Mono-Jet Analyses

Dark matter pair production through a diagram like figure 1 is one of the leading channels
for dark matter searches at hadron colliders [3, 4]. The signal would manifest itself as an excess
of jets plus missing energy (j + /ET ) events over the Standard Model background, which consists
mainly of (Z � ⇤⇤)+ j and (W � �inv⇤)+ j final states. In the latter case the charged lepton � is
lost, as indicated by the superscript “inv”. Experimental studies of j + /ET final states have been
performed by CDF [22], CMS [23] and ATLAS [24, 25], mostly in the context of Extra Dimensions.

Our analysis will, for the most part, be based on the ATLAS search [25] which looked for mono-
jets in 1 fb�1 of data, although we will also compare to the earlier CMS analysis [23], which used
36 pb�1 of integrated luminosity. The ATLAS search contains three separate analyses based on
successively harder pT cuts, the major selection criteria from each analysis that we apply in our
analysis are given below.3
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are vetoed if they contain a second jet with pT (j2) > 30 GeV and |�(j2)| < 4.5.

HighPT Selection requires /ET > 220 GeV, one jet with pT (j1) > 250 GeV, |�(j1)| < 2, and events
are vetoed if there is a second jet with |�(j2)| < 4.5 and with either pT (j2) > 60 GeV or
�⌅(j2, /ET ) < 0.5. Any further jets with |�(j2)| < 4.5 must have pT (j3) < 30 GeV.

veryHighPT Selection requires /ET > 300 GeV, one jet with pT (j1) > 350 GeV, |�(j1)| < 2, and
events are vetoed if there is a second jet with |�(j2)| < 4.5 and with either pT (j2) > 60 GeV
or �⌅(j2, /ET ) < 0.5. Any further jets with |�(j2)| < 4.5 must have pT (j3) < 30 GeV.

In all cases events are vetoed if they contain any hard leptons, defined for electrons as |�(e)| < 2.47
and pT (e) > 20 GeV and for muons as |�(µ)| < 2.4 and pT (µ) > 10 GeV.

The cuts used by CMS are similar to those of the LowPT ATLAS analysis. Mono-jet events
are selected by requiring /ET > 150 GeV and one jet with pT (j1) > 110 GeV and pseudo-rapidity
|�(j1)| < 2.4. A second jet with pT (j2) > 30 GeV is allowed if the azimuthal angle it forms with
the leading jet is �⌅(j1, j2) < 2.0 radians. Events with more than two jets with pT > 30 GeV are
vetoed, as are events containing charged leptons with pT > 10 GeV. The number of expected and
observed events in the various searches is shown in table I.

3 Both ATLAS and CMS impose additional isolation cuts, which we do not mimic in our analysis for simplicity and
since they would not have a large impact on our results.
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can enhance the production cross section once the mass of the s-channel mediator is within the
kinematic range and can be produced on-shell. This enhancement is particularly strong when the
mediator has a small decay width �, though it should be noted that within our assumptions � is
bounded from below due to the open decay channels to jets and to dark matter.

On the other hand, colliders have a relative disadvantage compared to direct detection experi-
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is denoted by �, and gq, g� are its couplings to quarks and dark matter, respectively. The direct
detection cross section, on the other hand, is approximately
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with the reduced mass µ�N of the dark matter and the target nucleus.
When M2 ⌅ q2, the limit that the collider sets on g2�g

2
q becomes independent of M , whereas

the limit on g2�g
2
q from direct detection experiments continues to become stronger for smaller M .

In other words, the collider limit on ⇤(⌅N ⇧ ⌅N) becomes weaker as M becomes smaller. On
the other hand, when m� < M/2 and the condition

�
q2 ⌃ M can be fulfilled, collider production

of ⌅̄⌅+X experiences resonant enhancement. Improved constraints on ⇥ can be expected in that
regime.

In figure 7, we investigate the dependence of the ATLAS bounds on the mediator mass M more
quantitatively including both on-shell and o⇤-shell production. Even though dark matter–quark
interactions can now no longer be described by e⇤ective field theory in a collider environment, we
still use ⇥ ⇥ M/

⌥
g�gq as a measure for the strength of the collider constraint, since ⇥ is the

quantity that determines the direct detection cross section. As before, we have used the cuts from
the ATLAS veryHighPt analysis (see section 3). We have assumed vector interactions with equal
couplings of the intermediate vector boson to all quark flavors.

At very large M (& 5 TeV), the limits on ⇥ in figure 7 asymptote to those obtained in the
e⇤ective theory framework. For 2m� ⌅ M . 5 TeV, resonant enhancement leads to a significant
improvement in the limit since the mediator can now be produced on-shell, so that the primary
parton–parton collision now leads to a two-body rather than three-body final state. As expected
from equation (12), the strongest enhancement occurs when the mediator is narrow. In figure 7,
this is illustrated by the upper end of the colored bands, which corresponds to � = M/8⇥.6 The
shape of the peaks in figure 7 is determined by the interplay of parton distribution functions, which
suppress the direct production of a heavy mediator, and the explicit proportionality of ⇥ to M
according to its definition. Below M ⌃ 2m�, the mediator can no longer decay to ⌅̄⌅, but only to
q̄q, so in this mass range, it can only contribute to the mono-jet sample if it is produced o⇤-shell.
In that regime, the limit on ⇥ is rather weak (even though the limit on g2�g

2
q is independent of M

there as discussed above), and the dependence on � disappears.

6 � = M/8� corresponds to a mediator that can annihilate into only one quark flavor and helicity and has couplings
g�gq = 1. Since in figure 7, we have assumed couplings to all quark helicities and flavors (collider production
is dominated by coupling to up-quarks though), and since g�gq > 1 in parts of the plot (see dashed contours),
� = M/8� should be regarded as a lower limit on the mediator width.
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Example: jet + ℓ+ℓ⁻+ MET

q̅

q

χ̅₁

χ₁

χ₂ ℓ±

ℓ∓
Z

basic cuts: jet pT > 100 GeV, 
|ηⱼ| < 2.5,  

MET > 100 GeV
for triggering

then require 2 leptons, 
pT > 7 GeV, |ηℓ| < 2.5

[Han, Kribs, AM, Menon 1401.1235]

there are SM backgrounds (WW+j, t t,̅τ+τ-+j), but they 
can be controlled with cuts 
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FIG. 4. Example m`` distributions after all other cuts, for case I, 20 fb�1 at the 8 TeV LHC. Note that the parameter
choices in the left side figure result in a chargino that is slightly lighter than the LEP II bound, which we show to
illustrate the change in the m`` distribution as M2 is lowered.

higher. However, more energetic leptons also increase m``, making this distribution more similar to the
background. Fixing µ = 110GeV,M1 = 1TeV the stacked m`` distributions for two di↵erent M2 values are
shown in Fig. 4. As we will show in detail in Sec. III B, the fake backgrounds are . 10% of the diboson
plus jet background and have similar shape. We expect the background uncertainties (both theoretical
and experimental) are at least at the 10% level, therefore we will neglect the fake lepton contribution in
Fig. 4 and in all subsequent m`` plots. The m`` distribution for the signal in the left-hand panel is clearly
similar to the background, while in the right-hand panel the signal m`` is clumped at lower values. The
splittings in corresponding scenarios are m�±

1
� m�0

1
= 5.4GeV,m�0

2
� m�0

1
= 51.1GeV for left hand plot

and m�±
1
�m�0

1
= 5.7GeV,m�0

2
�m�0

1
= 21.1GeV in the right-hand plot. Note that when the two leptons

in the final state come from di↵erent Higgsino decays the dilepton mass is no longer bounded by the inter-
Higgsino splitting. This explains the tail of signal events in the right hand panel of Fig. 4 that stretches out
to ⇠ 40GeV.

The other prominent feature of the m`` plot is the peak in the diboson background at m`` = mZ , which
comes from pp ! Z(⌫⌫̄)Z(``) + j. This feature will be cut out once we select a m`` window to determine
the final significance, but in practice it may be useful as a control sample, i.e. to pin down the diboson plus
jet background normalization.

The m`` distributions at 8TeV and 14TeV look almost identical, as we will show explicitly later on. This
is easy to understand; Higgsino production, diboson production, and Drell-Yan �⇤/Z all require a quark-
antiquark initial state. Once we ask for an additional jet, the dominant partonic subprocess (at the LHC)
for all three of these process is gluon plus quark, so the change in parton luminosity moving from 8 TeV to
14 TeV will a↵ect all three processes in the same way. The scale of the signal is slightly di↵erent than the
background, since 2m� ⇠ 2µ > 2mW > mZ . However, all of these scales are small compared to the beam
energy, so the di↵erence between the signal and background scales has negligible e↵ect. The t̄t background
is primarily initiated by gluon-gluon collisions, so it will rescale slightly di↵erently as the collider energy is
changed.

Moving to case II, M1 varies while M2 = 1TeV is fixed. We show the m`` distributions for two sample
M1 values below in Fig. 5, with µ = 110GeV,M2 = 1TeV, tan� = 10. For the two cases, the splittings are
m�±

1
�m�0

1
= 18.8GeV,m�0

2
�m�0

1
= 25.9GeV for the left spectrum, andm�±

1
�m�0

1
= 6.4GeV,m�0

2
�m�0

1
=

12.3GeV for the right. As in case I, there is a clear separation between signal and background when m``

is small (right-hand panel), but this distinction evaporates as the splitting increases (left-hand panel). The
di↵erence in the signal m`` spectrum between case II and case I can be traced to the �0

2 branching ratios
shown in Fig. 2. When M1 is light, as in case II, �0

2 decays predominantly to Z⇤. The two leptons in the
case come from a common mother particle, so the m`` in this case is bounded above by the mass of the Z⇤.

Example: jet + ℓ+ℓ⁻+ MET
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FIG. 8. The m`` distributions (stacked) after all other cuts, for M1 = M2 = 500GeV and µ = 110GeV. Left: 20
fb�1 at LHC,

p
s = 8TeV; right: 100 fb�1 at the

p
s = 14TeV LHC.
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FIG. 9. Significance for case III. As in Fig, 7, the dashed lines show the significance if the QCD resonance region of
m`` is removed.

Fig. 8 shows the m`` distribution at a 8TeV center of mass LHC, while the same distribution for a 14TeV
collider is shown in the right-hand panel; the shapes of the distributions at the two di↵erent energies are
nearly identical, as expected from earlier arguments. Interestingly, in this case, almost all signal events are
concentrated in a few low m`` bins, where the backgrounds are relatively small. Therefore, it is clear that
we should cut o↵ all events with higher m`` to maximize the significance. Due to the low e�ciency for the
leptons to pass the momentum threshold, the event rate is below 5 events at the

p
s = 8TeV LHC with

20 fb�1 of data when µ ⇠
> 140GeV. On the other hand, at the

p
s = 14TeV LHC, the statistics is good

enough to reach a ⇠ 5� discovery with a good S/B ratio when µ<⇠ 135GeV. For example, for µ = 120GeV,
choosing the mass window as 0 < m`` < 12GeV, we obtain 103 signal events and 197 background events for
100 fb�1, yielding S/

p
B = 7.3.

When M1 and M2 are held at 500GeV and 100 < µ < 200 GeV, the mass splittings remain almost
unchanged. Therefore the above discussion applies for the whole region. However, the event rate drops
rapidly when µ is increased. The S/

p
B values for this case are shown in Fig. 9 below assuming 100 fb�1 at

the
p
s = 14TeV LHC.

14 TeV, 100 fb-18 TeV, 20 fb-1
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1
=

12.3GeV for the right. As in case I, there is a clear separation between signal and background when m``

is small (right-hand panel), but this distinction evaporates as the splitting increases (left-hand panel). The
di↵erence in the signal m`` spectrum between case II and case I can be traced to the �0

2 branching ratios
shown in Fig. 2. When M1 is light, as in case II, �0

2 decays predominantly to Z⇤. The two leptons in the
case come from a common mother particle, so the m`` in this case is bounded above by the mass of the Z⇤.
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FIG. 8. The m`` distributions (stacked) after all other cuts, for M1 = M2 = 500GeV and µ = 110GeV. Left: 20
fb�1 at LHC,

p
s = 8TeV; right: 100 fb�1 at the

p
s = 14TeV LHC.
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FIG. 9. Significance for case III. As in Fig, 7, the dashed lines show the significance if the QCD resonance region of
m`` is removed.

Fig. 8 shows the m`` distribution at a 8TeV center of mass LHC, while the same distribution for a 14TeV
collider is shown in the right-hand panel; the shapes of the distributions at the two di↵erent energies are
nearly identical, as expected from earlier arguments. Interestingly, in this case, almost all signal events are
concentrated in a few low m`` bins, where the backgrounds are relatively small. Therefore, it is clear that
we should cut o↵ all events with higher m`` to maximize the significance. Due to the low e�ciency for the
leptons to pass the momentum threshold, the event rate is below 5 events at the

p
s = 8TeV LHC with

20 fb�1 of data when µ ⇠
> 140GeV. On the other hand, at the

p
s = 14TeV LHC, the statistics is good

enough to reach a ⇠ 5� discovery with a good S/B ratio when µ<⇠ 135GeV. For example, for µ = 120GeV,
choosing the mass window as 0 < m`` < 12GeV, we obtain 103 signal events and 197 background events for
100 fb�1, yielding S/

p
B = 7.3.

When M1 and M2 are held at 500GeV and 100 < µ < 200 GeV, the mass splittings remain almost
unchanged. Therefore the above discussion applies for the whole region. However, the event rate drops
rapidly when µ is increased. The S/

p
B values for this case are shown in Fig. 9 below assuming 100 fb�1 at

the
p
s = 14TeV LHC.

14 TeV, 100 fb-18 TeV, 20 fb-1
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FIG. 4. Example m`` distributions after all other cuts, for case I, 20 fb�1 at the 8 TeV LHC. Note that the parameter
choices in the left side figure result in a chargino that is slightly lighter than the LEP II bound, which we show to
illustrate the change in the m`` distribution as M2 is lowered.

higher. However, more energetic leptons also increase m``, making this distribution more similar to the
background. Fixing µ = 110GeV,M1 = 1TeV the stacked m`` distributions for two di↵erent M2 values are
shown in Fig. 4. As we will show in detail in Sec. III B, the fake backgrounds are . 10% of the diboson
plus jet background and have similar shape. We expect the background uncertainties (both theoretical
and experimental) are at least at the 10% level, therefore we will neglect the fake lepton contribution in
Fig. 4 and in all subsequent m`` plots. The m`` distribution for the signal in the left-hand panel is clearly
similar to the background, while in the right-hand panel the signal m`` is clumped at lower values. The
splittings in corresponding scenarios are m�±

1
� m�0

1
= 5.4GeV,m�0

2
� m�0

1
= 51.1GeV for left hand plot

and m�±
1
�m�0

1
= 5.7GeV,m�0

2
�m�0

1
= 21.1GeV in the right-hand plot. Note that when the two leptons

in the final state come from di↵erent Higgsino decays the dilepton mass is no longer bounded by the inter-
Higgsino splitting. This explains the tail of signal events in the right hand panel of Fig. 4 that stretches out
to ⇠ 40GeV.

The other prominent feature of the m`` plot is the peak in the diboson background at m`` = mZ , which
comes from pp ! Z(⌫⌫̄)Z(``) + j. This feature will be cut out once we select a m`` window to determine
the final significance, but in practice it may be useful as a control sample, i.e. to pin down the diboson plus
jet background normalization.

The m`` distributions at 8TeV and 14TeV look almost identical, as we will show explicitly later on. This
is easy to understand; Higgsino production, diboson production, and Drell-Yan �⇤/Z all require a quark-
antiquark initial state. Once we ask for an additional jet, the dominant partonic subprocess (at the LHC)
for all three of these process is gluon plus quark, so the change in parton luminosity moving from 8 TeV to
14 TeV will a↵ect all three processes in the same way. The scale of the signal is slightly di↵erent than the
background, since 2m� ⇠ 2µ > 2mW > mZ . However, all of these scales are small compared to the beam
energy, so the di↵erence between the signal and background scales has negligible e↵ect. The t̄t background
is primarily initiated by gluon-gluon collisions, so it will rescale slightly di↵erently as the collider energy is
changed.

Moving to case II, M1 varies while M2 = 1TeV is fixed. We show the m`` distributions for two sample
M1 values below in Fig. 5, with µ = 110GeV,M2 = 1TeV, tan� = 10. For the two cases, the splittings are
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12.3GeV for the right. As in case I, there is a clear separation between signal and background when m``

is small (right-hand panel), but this distinction evaporates as the splitting increases (left-hand panel). The
di↵erence in the signal m`` spectrum between case II and case I can be traced to the �0

2 branching ratios
shown in Fig. 2. When M1 is light, as in case II, �0

2 decays predominantly to Z⇤. The two leptons in the
case come from a common mother particle, so the m`` in this case is bounded above by the mass of the Z⇤.
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FIG. 8. The m`` distributions (stacked) after all other cuts, for M1 = M2 = 500GeV and µ = 110GeV. Left: 20
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s = 8TeV; right: 100 fb�1 at the
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FIG. 9. Significance for case III. As in Fig, 7, the dashed lines show the significance if the QCD resonance region of
m`` is removed.

Fig. 8 shows the m`` distribution at a 8TeV center of mass LHC, while the same distribution for a 14TeV
collider is shown in the right-hand panel; the shapes of the distributions at the two di↵erent energies are
nearly identical, as expected from earlier arguments. Interestingly, in this case, almost all signal events are
concentrated in a few low m`` bins, where the backgrounds are relatively small. Therefore, it is clear that
we should cut o↵ all events with higher m`` to maximize the significance. Due to the low e�ciency for the
leptons to pass the momentum threshold, the event rate is below 5 events at the

p
s = 8TeV LHC with

20 fb�1 of data when µ ⇠
> 140GeV. On the other hand, at the

p
s = 14TeV LHC, the statistics is good

enough to reach a ⇠ 5� discovery with a good S/B ratio when µ<⇠ 135GeV. For example, for µ = 120GeV,
choosing the mass window as 0 < m`` < 12GeV, we obtain 103 signal events and 197 background events for
100 fb�1, yielding S/

p
B = 7.3.

When M1 and M2 are held at 500GeV and 100 < µ < 200 GeV, the mass splittings remain almost
unchanged. Therefore the above discussion applies for the whole region. However, the event rate drops
rapidly when µ is increased. The S/

p
B values for this case are shown in Fig. 9 below assuming 100 fb�1 at

the
p
s = 14TeV LHC.

14 TeV, 100 fb-18 TeV, 20 fb-1
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FIG. 4. Example m`` distributions after all other cuts, for case I, 20 fb�1 at the 8 TeV LHC. Note that the parameter
choices in the left side figure result in a chargino that is slightly lighter than the LEP II bound, which we show to
illustrate the change in the m`` distribution as M2 is lowered.

higher. However, more energetic leptons also increase m``, making this distribution more similar to the
background. Fixing µ = 110GeV,M1 = 1TeV the stacked m`` distributions for two di↵erent M2 values are
shown in Fig. 4. As we will show in detail in Sec. III B, the fake backgrounds are . 10% of the diboson
plus jet background and have similar shape. We expect the background uncertainties (both theoretical
and experimental) are at least at the 10% level, therefore we will neglect the fake lepton contribution in
Fig. 4 and in all subsequent m`` plots. The m`` distribution for the signal in the left-hand panel is clearly
similar to the background, while in the right-hand panel the signal m`` is clumped at lower values. The
splittings in corresponding scenarios are m�±
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in the final state come from di↵erent Higgsino decays the dilepton mass is no longer bounded by the inter-
Higgsino splitting. This explains the tail of signal events in the right hand panel of Fig. 4 that stretches out
to ⇠ 40GeV.

The other prominent feature of the m`` plot is the peak in the diboson background at m`` = mZ , which
comes from pp ! Z(⌫⌫̄)Z(``) + j. This feature will be cut out once we select a m`` window to determine
the final significance, but in practice it may be useful as a control sample, i.e. to pin down the diboson plus
jet background normalization.

The m`` distributions at 8TeV and 14TeV look almost identical, as we will show explicitly later on. This
is easy to understand; Higgsino production, diboson production, and Drell-Yan �⇤/Z all require a quark-
antiquark initial state. Once we ask for an additional jet, the dominant partonic subprocess (at the LHC)
for all three of these process is gluon plus quark, so the change in parton luminosity moving from 8 TeV to
14 TeV will a↵ect all three processes in the same way. The scale of the signal is slightly di↵erent than the
background, since 2m� ⇠ 2µ > 2mW > mZ . However, all of these scales are small compared to the beam
energy, so the di↵erence between the signal and background scales has negligible e↵ect. The t̄t background
is primarily initiated by gluon-gluon collisions, so it will rescale slightly di↵erently as the collider energy is
changed.

Moving to case II, M1 varies while M2 = 1TeV is fixed. We show the m`` distributions for two sample
M1 values below in Fig. 5, with µ = 110GeV,M2 = 1TeV, tan� = 10. For the two cases, the splittings are
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is small (right-hand panel), but this distinction evaporates as the splitting increases (left-hand panel). The
di↵erence in the signal m`` spectrum between case II and case I can be traced to the �0

2 branching ratios
shown in Fig. 2. When M1 is light, as in case II, �0

2 decays predominantly to Z⇤. The two leptons in the
case come from a common mother particle, so the m`` in this case is bounded above by the mass of the Z⇤.
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FIG. 8. The m`` distributions (stacked) after all other cuts, for M1 = M2 = 500GeV and µ = 110GeV. Left: 20
fb�1 at LHC,

p
s = 8TeV; right: 100 fb�1 at the

p
s = 14TeV LHC.
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FIG. 9. Significance for case III. As in Fig, 7, the dashed lines show the significance if the QCD resonance region of
m`` is removed.

Fig. 8 shows the m`` distribution at a 8TeV center of mass LHC, while the same distribution for a 14TeV
collider is shown in the right-hand panel; the shapes of the distributions at the two di↵erent energies are
nearly identical, as expected from earlier arguments. Interestingly, in this case, almost all signal events are
concentrated in a few low m`` bins, where the backgrounds are relatively small. Therefore, it is clear that
we should cut o↵ all events with higher m`` to maximize the significance. Due to the low e�ciency for the
leptons to pass the momentum threshold, the event rate is below 5 events at the

p
s = 8TeV LHC with

20 fb�1 of data when µ ⇠
> 140GeV. On the other hand, at the

p
s = 14TeV LHC, the statistics is good

enough to reach a ⇠ 5� discovery with a good S/B ratio when µ<⇠ 135GeV. For example, for µ = 120GeV,
choosing the mass window as 0 < m`` < 12GeV, we obtain 103 signal events and 197 background events for
100 fb�1, yielding S/

p
B = 7.3.

When M1 and M2 are held at 500GeV and 100 < µ < 200 GeV, the mass splittings remain almost
unchanged. Therefore the above discussion applies for the whole region. However, the event rate drops
rapidly when µ is increased. The S/

p
B values for this case are shown in Fig. 9 below assuming 100 fb�1 at

the
p
s = 14TeV LHC.

14 TeV, 100 fb-18 TeV, 20 fb-1
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FIG. 9. Significance for case III. As in Fig, 7, the dashed lines show the significance if the QCD resonance region of
m`` is removed.

Fig. 8 shows the m`` distribution at a 8TeV center of mass LHC, while the same distribution for a 14TeV
collider is shown in the right-hand panel; the shapes of the distributions at the two di↵erent energies are
nearly identical, as expected from earlier arguments. Interestingly, in this case, almost all signal events are
concentrated in a few low m`` bins, where the backgrounds are relatively small. Therefore, it is clear that
we should cut o↵ all events with higher m`` to maximize the significance. Due to the low e�ciency for the
leptons to pass the momentum threshold, the event rate is below 5 events at the

p
s = 8TeV LHC with

20 fb�1 of data when µ ⇠
> 140GeV. On the other hand, at the

p
s = 14TeV LHC, the statistics is good

enough to reach a ⇠ 5� discovery with a good S/B ratio when µ<⇠ 135GeV. For example, for µ = 120GeV,
choosing the mass window as 0 < m`` < 12GeV, we obtain 103 signal events and 197 background events for
100 fb�1, yielding S/

p
B = 7.3.

When M1 and M2 are held at 500GeV and 100 < µ < 200 GeV, the mass splittings remain almost
unchanged. Therefore the above discussion applies for the whole region. However, the event rate drops
rapidly when µ is increased. The S/

p
B values for this case are shown in Fig. 9 below assuming 100 fb�1 at

the
p
s = 14TeV LHC.
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why are these working?
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large MET ↔ high pT leptons
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Now that we know the trick, can be applied to lots of other 
SUSY DM signals/final states 
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Figure 1: Dark matter production in association with a single jet in a hadron collider.

3.1. Comparing Various Mono-Jet Analyses

Dark matter pair production through a diagram like figure 1 is one of the leading channels
for dark matter searches at hadron colliders [3, 4]. The signal would manifest itself as an excess
of jets plus missing energy (j + /ET ) events over the Standard Model background, which consists
mainly of (Z � ⇤⇤)+ j and (W � �inv⇤)+ j final states. In the latter case the charged lepton � is
lost, as indicated by the superscript “inv”. Experimental studies of j + /ET final states have been
performed by CDF [22], CMS [23] and ATLAS [24, 25], mostly in the context of Extra Dimensions.

Our analysis will, for the most part, be based on the ATLAS search [25] which looked for mono-
jets in 1 fb�1 of data, although we will also compare to the earlier CMS analysis [23], which used
36 pb�1 of integrated luminosity. The ATLAS search contains three separate analyses based on
successively harder pT cuts, the major selection criteria from each analysis that we apply in our
analysis are given below.3

LowPT Selection requires /ET > 120 GeV, one jet with pT (j1) > 120 GeV, |�(j1)| < 2, and events
are vetoed if they contain a second jet with pT (j2) > 30 GeV and |�(j2)| < 4.5.

HighPT Selection requires /ET > 220 GeV, one jet with pT (j1) > 250 GeV, |�(j1)| < 2, and events
are vetoed if there is a second jet with |�(j2)| < 4.5 and with either pT (j2) > 60 GeV or
�⌅(j2, /ET ) < 0.5. Any further jets with |�(j2)| < 4.5 must have pT (j3) < 30 GeV.

veryHighPT Selection requires /ET > 300 GeV, one jet with pT (j1) > 350 GeV, |�(j1)| < 2, and
events are vetoed if there is a second jet with |�(j2)| < 4.5 and with either pT (j2) > 60 GeV
or �⌅(j2, /ET ) < 0.5. Any further jets with |�(j2)| < 4.5 must have pT (j3) < 30 GeV.

In all cases events are vetoed if they contain any hard leptons, defined for electrons as |�(e)| < 2.47
and pT (e) > 20 GeV and for muons as |�(µ)| < 2.4 and pT (µ) > 10 GeV.

The cuts used by CMS are similar to those of the LowPT ATLAS analysis. Mono-jet events
are selected by requiring /ET > 150 GeV and one jet with pT (j1) > 110 GeV and pseudo-rapidity
|�(j1)| < 2.4. A second jet with pT (j2) > 30 GeV is allowed if the azimuthal angle it forms with
the leading jet is �⌅(j1, j2) < 2.0 radians. Events with more than two jets with pT > 30 GeV are
vetoed, as are events containing charged leptons with pT > 10 GeV. The number of expected and
observed events in the various searches is shown in table I.

3 Both ATLAS and CMS impose additional isolation cuts, which we do not mimic in our analysis for simplicity and
since they would not have a large impact on our results.

q χ

q̄ χ

Light Mediators
For all but the lightest mediators EFT is good for direct 
detection

12

can enhance the production cross section once the mass of the s-channel mediator is within the
kinematic range and can be produced on-shell. This enhancement is particularly strong when the
mediator has a small decay width �, though it should be noted that within our assumptions � is
bounded from below due to the open decay channels to jets and to dark matter.

On the other hand, colliders have a relative disadvantage compared to direct detection experi-
ments in the light mediator case. The reason is that, from dimensional analysis, the cross section
for the collider production process pp ⇧ ⌅̄⌅+X scales as,

⇤(pp ⇧ ⌅̄⌅+X) ⇤
g2qg

2
�

(q2 �M2)2 + �2/4
E2 , (12)

where E is of order the partonic center-of-mass energy, M is the mass of the s-channel mediator
and q is the four momentum flowing through this mediator. At the 7 TeV LHC,

�
q2 has a broad

distribution which is peaked at a few hundred GeV and falls slowly above. The mediator’s width
is denoted by �, and gq, g� are its couplings to quarks and dark matter, respectively. The direct
detection cross section, on the other hand, is approximately

⇤(⌅N ⇧ ⌅N) ⇤
g2qg

2
�

M4
µ2
�N , (13)

with the reduced mass µ�N of the dark matter and the target nucleus.
When M2 ⌅ q2, the limit that the collider sets on g2�g

2
q becomes independent of M , whereas

the limit on g2�g
2
q from direct detection experiments continues to become stronger for smaller M .

In other words, the collider limit on ⇤(⌅N ⇧ ⌅N) becomes weaker as M becomes smaller. On
the other hand, when m� < M/2 and the condition

�
q2 ⌃ M can be fulfilled, collider production

of ⌅̄⌅+X experiences resonant enhancement. Improved constraints on ⇥ can be expected in that
regime.

In figure 7, we investigate the dependence of the ATLAS bounds on the mediator mass M more
quantitatively including both on-shell and o⇤-shell production. Even though dark matter–quark
interactions can now no longer be described by e⇤ective field theory in a collider environment, we
still use ⇥ ⇥ M/

⌥
g�gq as a measure for the strength of the collider constraint, since ⇥ is the

quantity that determines the direct detection cross section. As before, we have used the cuts from
the ATLAS veryHighPt analysis (see section 3). We have assumed vector interactions with equal
couplings of the intermediate vector boson to all quark flavors.

At very large M (& 5 TeV), the limits on ⇥ in figure 7 asymptote to those obtained in the
e⇤ective theory framework. For 2m� ⌅ M . 5 TeV, resonant enhancement leads to a significant
improvement in the limit since the mediator can now be produced on-shell, so that the primary
parton–parton collision now leads to a two-body rather than three-body final state. As expected
from equation (12), the strongest enhancement occurs when the mediator is narrow. In figure 7,
this is illustrated by the upper end of the colored bands, which corresponds to � = M/8⇥.6 The
shape of the peaks in figure 7 is determined by the interplay of parton distribution functions, which
suppress the direct production of a heavy mediator, and the explicit proportionality of ⇥ to M
according to its definition. Below M ⌃ 2m�, the mediator can no longer decay to ⌅̄⌅, but only to
q̄q, so in this mass range, it can only contribute to the mono-jet sample if it is produced o⇤-shell.
In that regime, the limit on ⇥ is rather weak (even though the limit on g2�g
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q is independent of M

there as discussed above), and the dependence on � disappears.
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g�gq = 1. Since in figure 7, we have assumed couplings to all quark helicities and flavors (collider production
is dominated by coupling to up-quarks though), and since g�gq > 1 in parts of the plot (see dashed contours),
� = M/8� should be regarded as a lower limit on the mediator width.

12

can enhance the production cross section once the mass of the s-channel mediator is within the
kinematic range and can be produced on-shell. This enhancement is particularly strong when the
mediator has a small decay width �, though it should be noted that within our assumptions � is
bounded from below due to the open decay channels to jets and to dark matter.

On the other hand, colliders have a relative disadvantage compared to direct detection experi-
ments in the light mediator case. The reason is that, from dimensional analysis, the cross section
for the collider production process pp ⇧ ⌅̄⌅+X scales as,

⇤(pp ⇧ ⌅̄⌅+X) ⇤
g2qg

2
�

(q2 �M2)2 + �2/4
E2 , (12)

where E is of order the partonic center-of-mass energy, M is the mass of the s-channel mediator
and q is the four momentum flowing through this mediator. At the 7 TeV LHC,

�
q2 has a broad

distribution which is peaked at a few hundred GeV and falls slowly above. The mediator’s width
is denoted by �, and gq, g� are its couplings to quarks and dark matter, respectively. The direct
detection cross section, on the other hand, is approximately

⇤(⌅N ⇧ ⌅N) ⇤
g2qg

2
�

M4
µ2
�N , (13)

with the reduced mass µ�N of the dark matter and the target nucleus.
When M2 ⌅ q2, the limit that the collider sets on g2�g

2
q becomes independent of M , whereas

the limit on g2�g
2
q from direct detection experiments continues to become stronger for smaller M .

In other words, the collider limit on ⇤(⌅N ⇧ ⌅N) becomes weaker as M becomes smaller. On
the other hand, when m� < M/2 and the condition

�
q2 ⌃ M can be fulfilled, collider production

of ⌅̄⌅+X experiences resonant enhancement. Improved constraints on ⇥ can be expected in that
regime.

In figure 7, we investigate the dependence of the ATLAS bounds on the mediator mass M more
quantitatively including both on-shell and o⇤-shell production. Even though dark matter–quark
interactions can now no longer be described by e⇤ective field theory in a collider environment, we
still use ⇥ ⇥ M/

⌥
g�gq as a measure for the strength of the collider constraint, since ⇥ is the

quantity that determines the direct detection cross section. As before, we have used the cuts from
the ATLAS veryHighPt analysis (see section 3). We have assumed vector interactions with equal
couplings of the intermediate vector boson to all quark flavors.

At very large M (& 5 TeV), the limits on ⇥ in figure 7 asymptote to those obtained in the
e⇤ective theory framework. For 2m� ⌅ M . 5 TeV, resonant enhancement leads to a significant
improvement in the limit since the mediator can now be produced on-shell, so that the primary
parton–parton collision now leads to a two-body rather than three-body final state. As expected
from equation (12), the strongest enhancement occurs when the mediator is narrow. In figure 7,
this is illustrated by the upper end of the colored bands, which corresponds to � = M/8⇥.6 The
shape of the peaks in figure 7 is determined by the interplay of parton distribution functions, which
suppress the direct production of a heavy mediator, and the explicit proportionality of ⇥ to M
according to its definition. Below M ⌃ 2m�, the mediator can no longer decay to ⌅̄⌅, but only to
q̄q, so in this mass range, it can only contribute to the mono-jet sample if it is produced o⇤-shell.
In that regime, the limit on ⇥ is rather weak (even though the limit on g2�g

2
q is independent of M

there as discussed above), and the dependence on � disappears.

6 � = M/8� corresponds to a mediator that can annihilate into only one quark flavor and helicity and has couplings
g�gq = 1. Since in figure 7, we have assumed couplings to all quark helicities and flavors (collider production
is dominated by coupling to up-quarks though), and since g�gq > 1 in parts of the plot (see dashed contours),
� = M/8� should be regarded as a lower limit on the mediator width.

Thursday, February 5, 15

ℓ + γ  + MET final state

[See Han 1409.7000, Bramante et al 1412.4789, 1510.03460]

occurs when the DM is a  
wino-bino mixture

important, as wino-bino DM often 
can’t be found by  

direct/indirect detection



Now that we know the trick, can be applied to lots of other 
SUSY DM signals/final states 

Ex.

4

q

q̄

�

�̄

Figure 1: Dark matter production in association with a single jet in a hadron collider.

3.1. Comparing Various Mono-Jet Analyses

Dark matter pair production through a diagram like figure 1 is one of the leading channels
for dark matter searches at hadron colliders [3, 4]. The signal would manifest itself as an excess
of jets plus missing energy (j + /ET ) events over the Standard Model background, which consists
mainly of (Z � ⇤⇤)+ j and (W � �inv⇤)+ j final states. In the latter case the charged lepton � is
lost, as indicated by the superscript “inv”. Experimental studies of j + /ET final states have been
performed by CDF [22], CMS [23] and ATLAS [24, 25], mostly in the context of Extra Dimensions.

Our analysis will, for the most part, be based on the ATLAS search [25] which looked for mono-
jets in 1 fb�1 of data, although we will also compare to the earlier CMS analysis [23], which used
36 pb�1 of integrated luminosity. The ATLAS search contains three separate analyses based on
successively harder pT cuts, the major selection criteria from each analysis that we apply in our
analysis are given below.3

LowPT Selection requires /ET > 120 GeV, one jet with pT (j1) > 120 GeV, |�(j1)| < 2, and events
are vetoed if they contain a second jet with pT (j2) > 30 GeV and |�(j2)| < 4.5.

HighPT Selection requires /ET > 220 GeV, one jet with pT (j1) > 250 GeV, |�(j1)| < 2, and events
are vetoed if there is a second jet with |�(j2)| < 4.5 and with either pT (j2) > 60 GeV or
�⌅(j2, /ET ) < 0.5. Any further jets with |�(j2)| < 4.5 must have pT (j3) < 30 GeV.

veryHighPT Selection requires /ET > 300 GeV, one jet with pT (j1) > 350 GeV, |�(j1)| < 2, and
events are vetoed if there is a second jet with |�(j2)| < 4.5 and with either pT (j2) > 60 GeV
or �⌅(j2, /ET ) < 0.5. Any further jets with |�(j2)| < 4.5 must have pT (j3) < 30 GeV.

In all cases events are vetoed if they contain any hard leptons, defined for electrons as |�(e)| < 2.47
and pT (e) > 20 GeV and for muons as |�(µ)| < 2.4 and pT (µ) > 10 GeV.

The cuts used by CMS are similar to those of the LowPT ATLAS analysis. Mono-jet events
are selected by requiring /ET > 150 GeV and one jet with pT (j1) > 110 GeV and pseudo-rapidity
|�(j1)| < 2.4. A second jet with pT (j2) > 30 GeV is allowed if the azimuthal angle it forms with
the leading jet is �⌅(j1, j2) < 2.0 radians. Events with more than two jets with pT > 30 GeV are
vetoed, as are events containing charged leptons with pT > 10 GeV. The number of expected and
observed events in the various searches is shown in table I.

3 Both ATLAS and CMS impose additional isolation cuts, which we do not mimic in our analysis for simplicity and
since they would not have a large impact on our results.
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can enhance the production cross section once the mass of the s-channel mediator is within the
kinematic range and can be produced on-shell. This enhancement is particularly strong when the
mediator has a small decay width �, though it should be noted that within our assumptions � is
bounded from below due to the open decay channels to jets and to dark matter.

On the other hand, colliders have a relative disadvantage compared to direct detection experi-
ments in the light mediator case. The reason is that, from dimensional analysis, the cross section
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is denoted by �, and gq, g� are its couplings to quarks and dark matter, respectively. The direct
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with the reduced mass µ�N of the dark matter and the target nucleus.
When M2 ⌅ q2, the limit that the collider sets on g2�g

2
q becomes independent of M , whereas

the limit on g2�g
2
q from direct detection experiments continues to become stronger for smaller M .

In other words, the collider limit on ⇤(⌅N ⇧ ⌅N) becomes weaker as M becomes smaller. On
the other hand, when m� < M/2 and the condition

�
q2 ⌃ M can be fulfilled, collider production

of ⌅̄⌅+X experiences resonant enhancement. Improved constraints on ⇥ can be expected in that
regime.

In figure 7, we investigate the dependence of the ATLAS bounds on the mediator mass M more
quantitatively including both on-shell and o⇤-shell production. Even though dark matter–quark
interactions can now no longer be described by e⇤ective field theory in a collider environment, we
still use ⇥ ⇥ M/

⌥
g�gq as a measure for the strength of the collider constraint, since ⇥ is the

quantity that determines the direct detection cross section. As before, we have used the cuts from
the ATLAS veryHighPt analysis (see section 3). We have assumed vector interactions with equal
couplings of the intermediate vector boson to all quark flavors.

At very large M (& 5 TeV), the limits on ⇥ in figure 7 asymptote to those obtained in the
e⇤ective theory framework. For 2m� ⌅ M . 5 TeV, resonant enhancement leads to a significant
improvement in the limit since the mediator can now be produced on-shell, so that the primary
parton–parton collision now leads to a two-body rather than three-body final state. As expected
from equation (12), the strongest enhancement occurs when the mediator is narrow. In figure 7,
this is illustrated by the upper end of the colored bands, which corresponds to � = M/8⇥.6 The
shape of the peaks in figure 7 is determined by the interplay of parton distribution functions, which
suppress the direct production of a heavy mediator, and the explicit proportionality of ⇥ to M
according to its definition. Below M ⌃ 2m�, the mediator can no longer decay to ⌅̄⌅, but only to
q̄q, so in this mass range, it can only contribute to the mono-jet sample if it is produced o⇤-shell.
In that regime, the limit on ⇥ is rather weak (even though the limit on g2�g

2
q is independent of M

there as discussed above), and the dependence on � disappears.

6 � = M/8� corresponds to a mediator that can annihilate into only one quark flavor and helicity and has couplings
g�gq = 1. Since in figure 7, we have assumed couplings to all quark helicities and flavors (collider production
is dominated by coupling to up-quarks though), and since g�gq > 1 in parts of the plot (see dashed contours),
� = M/8� should be regarded as a lower limit on the mediator width.
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co-annihilation fixes the tension, but co-annihiliating states 
must be nearly same mass as DM
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Summarizing

If supersymmetry is the (or part of) the theory beyond the 
Standard Model, expect the electroweakinos to be light, 

fairly degenerate

.. this is exactly where they’re hard to find

new idea to access these compressed spectra

• use initial radiation to trigger, look for 
accompanying softer objects (ℓ⁺ℓ⁻,etc.) offline 

• should work for non-SUSY setups too!

look good at simulation level, work better for smaller splittings
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have a great Masterclass, and hope to see you again 
soon! 


