
Data model update
M.Krzewicki, FIAS

for CWG4

CWG4, 2016-02-16, M.Krzewicki

outlook

• In-memory data layout & transport layer.
• basic structures, conventions and agreements.
• FairMQ support of required features.

• Transitional (timeframe-) data formats.

• Status of implementation.

• Milestones

2

CWG4, 2016-02-16, M.Krzewicki

Basic principles

• Constraints:
• Each processing step (device) independent.
• API is the message exchange format between devices.
• Everything is in memory.
• Many different data types from many sources.
• In principle every data buffer at a random location in memory.

• Goals:
• Marry the many data fragments belonging to a single unit (timeframe).
• Avoid data duplication (and copying).
• Keep the schema extensible.
• Hide as much logic as possible behind easy to use interfaces.

3

CWG4, 2016-02-16, M.Krzewicki

Outcome of discussions so far

• The format consists of header information and payload. The latter is not
touched by the framework.

• Multi-part approach is used for the transport, implemented by the transport
framework (FairMQ) → Format consists of a sequence of separate parts
(header and payload in separate parts).

• Each data part is preceded by a corresponding header part 
Header part supports an extensible header stack.

• FairMQ supports all of the above.
• still some tweaking of APIs, as expected.

• Discussions on memory management:
• proposal to allow FairMQ to do full buffer management to allow

transparent use of e.g. shared memory.

4

CWG4, 2016-02-16, M.Krzewicki

In memory layout of the O2 message (timeframe)

• Buffers with data at random locations in memory.
• A zero-copy approach (with some transports, handled transparently by FairMQ)
• Order of message parts is preserved, we rely on convention to group the header-payload pairs.

5

Payload

H
e

a
d

e
r

N
ex

t H
ea

ders

Logical data block

Payload

H
e

a
d

e
r

H
e

a
d

e
r

H
e

a
d

e
r

Payload

memory

FairMQParts

F
a

ir
M

Q
M

e
s
s
a

g
e

&
H

e
a
d
e
r

F
a

ir
M

Q
M

e
s
s
a

g
e

&
P

a
y
lo

a
d

F
a

ir
M

Q
M

e
s
s
a

g
e

&
H

e
a
d
e
r

F
a

ir
M

Q
M

e
s
s
a

g
e

&
P

a
y
lo

a
d

F
a

ir
M

Q
M

e
s
s
a

g
e

&
H

e
a
d
e
r

F
a

ir
M

Q
M

e
s
s
a

g
e

&
P

a
y
lo

a
d

Logical data block Logical data block

CWG4, 2016-02-16, M.Krzewicki

General header format

• Starts with basic header information, never serialized, with unique version
number (detailed format in the following slides).

• Enforce strict policy: no changes to members (e.g. width) or sequence of
members, new members can be appended, new version number.

• All basic header structs are defined with fixed endianness and padding.
• Handlers for inhomogeneous systems will be provided at compile time.

• Strategy: “keep concept open for new ideas but do not solve problems we
don’t have at the moment.”

• Header-stack concept: optional headers can follow the basic header.
• A next header is indicated in a flag member of preceding header
• Optional headers consist of a fixed NextHeaderDescription followed by the

NextHeaderContent

6

Header definition

• extensions: only new members at the end OR header stack

• for more details see e.g. https://indico.cern.ch/event/491190/

7

struct DataHeader
{
 //a magic string
 char magicString[3+1];
 //origin of the data (originating detector)
 char dataOrigin[3+1];
 //serialization method
 char payloadSerialization[7+1];
 //data type descriptor
 char dataDescription[15+1];
 //sub specification (e.g. link number)
 uint64_t subSpecification;
 //flags, first bit indicates that a sub header follows
 uint32_t flags;
 //version of this header
 uint32_t headerVersion;
 //size of this header
 uint32_t headerSize;
 //size of the associated data
 uint32_t payloadSize;
}

CWG4, 2016-02-16, M.Krzewicki

Header stack

• Design an open concept of headers which can accommodate extension
requests like those we had in the past (e.g. more trigger bits, new detectors,
more detector links).

• Indicate in the header flags that there will be a next header coming
immediately after the current header.

• Additional headers consist of basic header information
NextHeaderDescription and following that NextHeaderContent (in a single
buffer)

• Header payload can be serialized

8

//__
struct NextHeaderDescription
{
 // size of this next header description
 int32_t size;
 // size of the next header payload
 int32_t payloadSize;
 // serialization method
 char serializationMethod[7+1];
 // header contents description
 char headerDescription[15+1];
 //first bit indicates there is a next one after this
 int32_t flags;
};

CWG4, 2016-02-16, M.Krzewicki

Header and payload navigation

• The logical structure of the message (timeframe) depends on framing and
convention (separate headers and payloads)
• Tools for easy access and navigation are being developed

• Using standard C++/stl tools and concepts (iterators etc.).
• Similar approach to navigate the timeframe and the header stack.
• First useable interfaces should be there soon.
• development happens here: 
 
https://github.com/mkrzewic/AliceO2/tree/dev 
https://github.com/matthiasrichter/AliceO2/tree/dev-format/format

9

https://github.com/mkrzewic/AliceO2/tree/dev
https://github.com/matthiasrichter/AliceO2/tree/dev-format/format

Transitional (test-) timeframe format
• Definition of the actual persistent format postponed.

• User code (reconstruction, calibration) implemented as FairMQDevice only
sees the message, everything is already in memory.

• A file reader (sampler) device can easily be written with support for any
on-disk format.

• First idea is to just use separate raw data files for every detector (link) - a la
derooted raw files.

• Implementation after the message navigation API ready.

• Detectors can provide the raw data already now.

10

CWG4, 2016-02-16, M.Krzewicki

CWG4 milestones

• Jan 2016:
• Assessment of available manpower.
• Task definitions and assignments.
• First proposal AOD format.
• First proposal QA formats.

• Q1 2016
• In memory data layout. (agreements reached, implementation ongoing)
• Transitional file format for test time frames.

• Q2 2016:
• Prototype persistent format time frame and compressed time.
• Prototype AOD format.
• Prototype of auxiliary formats (QA etc.)

• Q3: Data model/interface implemented and used in further prototyping.

11

