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Some useful references

C. Roda’s Hasco 2015 lectures: Day 1 and Day 2
P. Layfer’s lecture withX = 1, ..., 18
J. Kopp’s Quantum Field Theory Lecture notes
ATLAS and CMS Standard Model Physics results.
Particle Data Group publication and web
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https://indico.cern.ch/event/388801/contributions/1822106/
https://indico.cern.ch/event/388801/contributions/1822108/
http://www2.ph.ed.ac.uk/~playfer/PPlect1.pdf
https://www.staff.uni-mainz.de/jkopp/qft2-2016-material/lecture-notes.pdf
https://twiki.cern.ch/twiki/bin/view/AtlasPublic/StandardModelPublicResults
https://twiki.cern.ch/twiki/bin/view/CMSPublic/PhysicsResultsSMP
http://pdg.lbl.gov/
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The Standard Model

The Standard Model → The Standard Model of Particle Physics
Many lectures in this school are about Standard Model: QCD from
C. Doglioni, Top from E. Yazgan and Higgs from A. Knue
Focus on Electroweak Physics
SM is a very well assessed theory and, so far, very much in
agreement with experimental measurements. So why bother with
that?

“Laboratory” where to watch Quantum Field Theory in action!
All SM processes are the background for Beyond Standard Model
searches ⇒ better know your ennemy!
Perform precision measurements to find discrepancies with precise
theory predictions ⇒ Indirect hints of Beyond Standard Model
Physics.
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ElectroWeak Theory
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Special Relativity

Postulates: Speed of light in vacuum is a universal constant AND all
inertial reference frame systems are equivalent.
Space and time are “categories” that mix together.
Four-dimensional space-time: (~x , t)→ (x0, x1, x2, x3)→ x
Changing reference frame: contraction of length, expansion of time
intervals
Mass and energy transform one in the other
speed of light in vacuum is a universal constant

⇒ Classical physics has to be modified when objects travel close to
speed light.

E = mc2
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Electromagnetism
Maxwell equations do NOT seem to be relativistic invariant (Lorentz
invariant).
Use potentials A(~x , t),A(x) instead of Electrical ~E (~x , t) and Magnetic
~B(~x , t) field.

~E (~x , t) = −~∇V (~x , t)− ∂~A(~x ,t)
∂t ,

~B(~x , t) = ~∇× ~A(~x , t)

Covariant indices: µ = 0, 1, 2, 3
Relativistic potential Aµ = (V , ~A)
Relativistic current Jµ = (ρ,~J)
Electromagnetic strength field tensor
F

Fµν ≡ ∂µAν −∂µAµ =


0 −Ex −Ey −Ez

Ex 0 −Bz By
Ey Bz 0 −Bx
Ez −By Bx 0

 , F̃µν ≡ 1
2ε
µνρσFρσ

Covariant form of Maxwell equations:

∂µF̃µν = 0 ∂µFµν = Jν .
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Gauge Transformations
Conservation of electromagnetic current:

∂ρ

∂t +∇J = 0 ⇒ ∂νJν = 0;

∂ν∂µFµν = 0

In terms of potential A, ∂µFµν = Jν becomes:

�Aν − ∂ν(∂µAµ) = Jν

Note that the same dynamic can be described by the different potentials.
Same field strength tensor Fµν but different potentials A provided that:

Aµ → A′µ = Aµ + ∂µΛ
This is called gauge invariance.
We can choose the Lorentz gauge ∂µAµ = 0 such that:

�Aν − ∂ν(∂µAµ) = Jν → �Aν = Jν
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Quantum Mechanics

Quantum Mechanics Göttingen is one of the birthplaces of QM!
Microscopic world requires a different kind of model to describe
reality.
In particular wave ↔ particle dualism:

Light is made both of wave (interference, diffraction) and particle
(photoelectric effect. Photon quanta of energy E = hν)
Matter is also wave with wave length λ = ~/p ⇒ matter also shows
typical quantum mechanical behavior. (e.g. interference and
diffraction of electrons).

How to describe both particle and wave behavior of and electron?
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Schrödinger Equation

De Broglie proposed to describe electrons with momentum p with a wave
with wavelength (De Broglie wavelength 1923):

λ = ~
p

In 1926 Schrödinger proposed a mathematical approach to describe a
particle with momentum p and mass m evolving in a a potential V (~r , t).

i~∂ψ
∂t = − ~2

2m∇
2ψ(~r , t) + V (~r , t)ψ(~r , t)

Schrödinger Equation
What is ψ(~r , t)?
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Wave Function

Max Born (Göttingen again!) proposed that the square of ψ(~r , t)
represents the probability to find a particle in a definite state:∫ r+dr

r
|ψ(~r , t)|2 = Prob.(find a particle ∈ [r , r + dr ], t)

Deterministic (Classic) ⇒ Probabilistic (quantum)
However note that Schrödinger equation is NOT relativistic invariant
How to deal with fast and microscopic particles?
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Klein-Gordon Equation
Reminder: Relativistic motion for particle of mass m and momentum ~p
(using natural units ~ = c = 1)

E 2 − |~p|2 = m = pµpµ

Quantum Mechanics substitution:

E → i~ ∂
∂t and ~p → i~~∇ ⇒ pµ → i~∂µ

gives the Klein-Gordon equation:(
− ∂2

∂t2 +∇2
)
ψ = m2ψ (�2 −m2)ψ = 0

Solutions:
ψ(xµ) ∝ e−ipµxµ

= e−i(Et−~p·~x)

Positive and Negative energy solution. What are “negative” energy
solutions?:

E = ±
√

p2 + m2
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Dirac equation: Consequences
In 1928 P.A.M. Dirac first successful attempt to put together special
relativity and quantum mechanics. Trying to get “the square root” of
Klein-Gordon Equation:

(�2 −m2)ψ = 0→
(

iγ0 ∂

∂t + i~γ~∇−m
)
ψ = 0

⇒ ((�2 −m2)ψ = (iγµ∂µ −m)ψ = 0
γµ cannot be simple numbers (e.g. scalars). They have to satisfy:(

−iγ0 ∂

∂t + i~γ~∇−m
)(

iγ0 ∂

∂t − i~γ~∇−m
)

= 0

Therefore, they have to satisfy:

(γ0)2 = 1 (γ1)2 = (γ2)2 = (γ3)2 = −1 Unitarity
γ iγj + γjγ i = 0 i 6= j anticommutation
⇒ γ iγj = g ij

{γ i , γj} = 2g ij 16 / 134
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Dirac equation: Solutions

The simplest solution is with D = 4 (i.e. ψ = (ψ0, ψ1, ψ2, ψ3).(D is NOT
the space-time dimension) ⇒ spinor has 4 components. And:

γ0 =
(

0 I
I 0

)
γ i =

(
0 σi
−σi 0

)
i = 1, 2, 3

where I and O are 2× 2 matrices

I =
(

1 0
0 1

)
O =

(
0 0
0 0

)
where the σi are the 2× 2 Pauli spin matrices
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Dirac Spinors
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Solutions of Dirac Equation
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Solutions of Dirac Equation: Rest

20 / 134



Introduction
Quantum Electrodynamics

Weak Interactions
ElectroWeak Unification

Multiboson Production

Solutions of Dirac Equation: Motion
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Wavefunctions: Electron and Positron
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Helicity

Useful to introduce chirality operators:

γ5 ≡ iγ0γ1γ2γ3 =
(

0 I
I 0

)
(γ5)2 = 1

PL ≡
1− γ5

2 PR ≡
1 + γ5

2 ⇒ P2
(L,R) = P(L,R) PLPR = PRPL = 0

ψ(x) = [PL + PR ]ψ(x) ≡ ψL(x) + ψR(x)

H = ~σ · ~p
|~σ||~p| Helicity

These are also called fermion helicities.
Straightforward to identify two components of spin ⇒ quantum
mechanical and relativistic description of an electron (with correct
spin assignment) S = 1

2 .
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Dirac equation: Consequences

The Dirac equation is able to give the correct description of an electron
moving at high energy (including the magnetic properties e.g. spin)
however ... this equation allowed a second solution for a particle with
mass equal to the electron mass but with opposite charge.
This second solution produced three years of confusion...
In 1931 Dirac gives the key input for the interpretation of this second
solution: “if this second particle existed it would be a particle of a new
type, unknown to the experimental physics, having the same mass of the
electron and opposite charge”
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Helicity
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Anti-Electron Discovery
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Cloud Chamber
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Lagrangian

As in analytical mechanics, Dirac and Klein-Gordon equations are
equation of motions
⇒ they are the Euler-Lagrange of “some” Lagrangian L(φ, ∂µφ)
Euler-Lagrange equations:

∂µ
δL

δ(∂µφ) = δL
δφ

The L that gives the Dirac equation is:

L = ψ̄(i∂/−m)ψ
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Symmetries and Conservation Laws
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Continuous Symmetries

Göttingen again!

Imagine a L that is invariant under continuous
transformations of the fields (parameter α):

φ(x)→ φ′(x) = T (α;φ(x))
φ(x)→ φ′(x) = φ(x) + α∆(φ(x)) For small α

If Lagrangian is conserved (actually it is
∫
Ld4x that has

to be conserved):

L → L′ = L+ α∆L = L
∂µjµ = 0

jµ = δL
δ(∂µφ) ∆φ

Noether’s theorem. jµ is also called conserved current. For every continuous
symmetry in nature, there is a corresponding conservation law (and viceversa!)
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Examples

What is the conservation law:
associated to the gauge symmetry of the electromagnetic field?
associated to the translation invariance?
associated with rotational invariance?
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Discrete Symmetries: Parity, Charge Conjugation and
Time Reversal
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Towards a Quantum Field Theory model of
Electromagnetism

The successful use of quantum mechanics and relativity started with
the Dirac equation found his completion in the quantum field theory
(QFT) describing particle interactions.
The key ingredient in this theory is the concept of field, introduced
by Maxwell, and modified to respect the new concepts introduced by
quantum mechanics and relativity.
After quantization, the fields are not anymore continuous but they
are decompsed in quantum of energy that are what we indicated
with “particles” and that are indeed the manifestation of the
quantistic fields.
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Cross section, decay rates,...
Decay rate Γ is the probability per
unit time that a given type of
particle will disintegrate.

N(t)− N(t + ∆t) = −NΓ∆t
dN = ΓNdt

N(t) = N(0)e−Γt

If more than one decay mode the
total decay rate is given by the sum
of all possible decay rates.

Γtot =
n∑

i=1
Γi

Branching ratios are obtained from:
BRi = Γi/Γtot . The mean lifetime is:

τ = 1
Γtot

When extremely short life time (e.g.
cannot directly measure the decay
time) Γ is called Decay Width. Γi
are Partial Widths
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Cross sections

Cross sections are connected to the probability that a certain process
happens.
Example: we have two beams with opposite directions of electrons and
positrons we want to know how many µ+µ− events we will measure.
This will depend both on the e+e− → µ+µ− dynamics and on the
number of collisions we produce.

dN
dt = σ(e+e− → µ+µ−)× L

N = σ(e+e− → µ+µ−)×
∫
Ldt

Inclusive cross section e.g. σ(e+e− → µ+µ−)
Differential cross section dσ

dΩ (e.g. dσ
dp and dσ

d cos θ and dσ
dNjet

)
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Luminosity

N1,2 particles in bunch 1, 2
frev revolution frequency
A transverse dimension of beam
(equivalent 4πσxσy )
nb number of colliding bunches

L = nbN1N2
ATrev

= nbN1N2
A frev

L = [L]−2[T ]−1

m2 is by far a too large unit.
Units for cross sections in
particle physics are barns:

1barn = 10−28m2 = 10−24cm2
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Theory vs Experiment

In order to calculate decay rates and the cross-sections we need two
ingredients:

Matrix element that contains the dynamic of the interaction ⇒
Feynman diagrams
Phase space: contains masses, momenta, energy and it reflects the
possible kinematic allowed space for the interaction. For example if
the process is not allowed because the energy of the final state
would be higher than the energy of the initial state it is this part of
the calculation that is 0.

Cross sections and decay widths with Golden Rule
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Decay Rate
Suppose the particle 1 is at rest and decays in n particles the decay rate
Γ is:

1→ 2 + 3 + 4 + ...+ n
The decay rate is given by:

Γ = S
2m1

∫
|M|2(2π)4δ4(p1−p2− ...−pn)×

n∏
j=2

2πδ(p2
j −m2

j )θ(p0
j ) d4pj

(2π)4

Simplest case 1→ 2 3:

Γ = S|~p|
8πm2

1
|M|2 Sis a factor for identical particles

|~p| is the particle of the outgoing of the momenta. In particle 1 rest
frame ~p2 = −~p3.Remember that in natural units:

~ =c = 1
[L] =[T ] = [E ]−1 = [M]−1

⇒[M] = [E ] 40 / 134
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Scattering

Suppose that two particles colliding 1 and 2 produce particles
3 + 4 + ...+ n. Cross section is given by:

σ = S
4
√

(p1p2)2 − (m1m2)2∫
|M|2(2π)4δ4(p1 + p2 − p3...− pn)×

n∏
j=3

2πδ(p2
j −m2

j )θ(p0
j ) d4pj

(2π)4

Simplest case 1 + 2→ 3 + 4:

dσ
dΩ =

(
1

8π

)2 S|M|2
(E1 + E2)2

|~pf |
|~pi |

|~pi | in the rest frame of (1, 2) ~pi(f ) is the incoming (outgoing) particle
momentum.
In this case M is dimensionless.
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How to calculate M?

M represents the probability amplitude between an initial state and
a final state.
⇒ contains the interaction.
it is then integrated out and summed over all the polarizations
(unless you are able to produce polarized beams or you can measure
the polarization of decay products)

Each diagram represents a function of the kinematic variables of the
initial and final state particles that is used to calculate the probability
with which a certain process occurs
Simplest interaction is electron with an electromagnetic field
In terms of particles:

⇒ these are Feynman Diagrams
Feynman diagrams are NOT just
drawings!
They are symbolic calculations
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Electron-Positron
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Calculating M

Let us start with the vertex:
The vertex e − γ − e is related to
the strength of the interaction and
on the electric charge. −q

√
4π
~c

For electrons:→
√

4πα = ge
For quark u-type 2

3
√

4πα
Reminder: αem = 1/137 For electrons:

|M|2 ∝ 16π2α2

Each additional vertex “adds” up q
√
α to M (and thus q2α to any

obervable)
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Workout: Electron-Muon Scattering

M = [ūe(p3)γν ieγν

q ue(p1)][ūµ(p4)γµ ieγµ

q uµ(p2)]

= − e2

q2 [ūe(p3)γµue(p1)][ūµ(p4)γµuµ(p2)]
¯|M|2 = 1

(2s1+1)(2s2+1)
∑

spins |M̄|2 = 2e4 s2+u2

t2

q2 = (p1 − p3)2 = (p2 − p4)2 = t

u(e/µ) destroys an electron/muon or creates a positron/µ+.
ū(e, µ) creates an electron/muon or destroys a positron/µ+

Factor e2 from the two vertices
1
q2 from fermionic propagator
Jµ = ūiγ

µui is the electromagnetic current
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Renormalization
UV Divergence

Higher order diagrams with large virtual 4-momentum k →∞)
transfer give divergent integrals
This is a problem with Feynman diagrams calculation

M∝
∫

d4k k\+ m
k2 −m2

(q\ − k\)−m2

(q − k)2 −m ∝
∫

k3dk k2

k4 h
∫

kdk

The solution is the tehcnique called renormalization that redefines
coupling, masses using a cut-off (M) (Mass regularization)

Renormalization: redefinition of masses, charges, spinors,...:

e → eR =
(

1− α

3π ln
(

Λ2

m2

)
+O(α2)

)2

Generally in QED it is safe to ignore terms O(α2),
Renormalized current: Jµ → Jµr = er (ūγµu)
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α running

A consequence of renormalisation is that the value of the coupling
constant αem becomes a function of q2 (the scale of energy of the
interaction):

α(q2) = α(µ2)
1− α(µ2)

3π ln
(

q2

µ2

)
where µ is a reference 4-momentum transfer which is used to remove the
dependence on the cutoff parameter Λ.
At low energies α = 1/137,
At q2 ∼ MZ = 90 GeV α = 128,
Can be thought of as a correction to the “bare” electric charge to
account for “screening” by higher order diagrams with virtual photons
and fermion/antifermion pairs.
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Vacuum polarization
In QED electron and positron virtual clouds effectively screen the electric
charge:

Probe close ⇒ Large effective charge
Probe far ⇒ small effective charge

from “Quark and Leptons” F. Halzen, A.D. Martin
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Results Muon g − 2
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Decays and Conservation Laws

The photon is stable: there is nothing lighter to decay...
The electron is stable, is the lighter charged particle
The proton is stable,it is the lightest baryon and baryon number is
conserved (more on this later)
The positron and antiproton are also stable for the same reasons as
above (unless they come in contact)
Also the neutron in the “protected” environment of the nucleus can
become stable
Our world (the matter) is populated by electrons, protons, neutrons
and neutrinos (lepton number)
More exotic particles can be created but they decay transforming to
more stable particles
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Interactions and conservation laws
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Lifetimes and Interactions
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Neutron decay
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Weak Interaction: First Attempt

E. Fermi made a successful theory of
“weak interactions”

n→ p + e− + ν̄

What is the interaction term of such interaction?
Today we call that an Effective Field Theory
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Fermi Theory: First Attempt
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Parity Violation
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Strength of Weak Force

Finding the relation between g and GF :

M =
(

g√
2

ūdγµ
1
2 (1− γ5)uu

)
1

M2
W − q2

(
g√
2

ūνeγ
µ 1

2 (1− γ5)ue

)
Mweak = GF√

2
[ū(p)γµu(n)][ū(e)γµu(ν)]

GF√
2

= g√
2
× g√

2
× 1

2 ×
1
2 ×

1
M2

W − q2 → lim
q2�M2

W

g2

8M2
W

with MW ∼ 80GeV , GF = 1.12.10−5GeV−2 ⇒ g = 0.65

αWeak = g2

4π = 1
29.5

Not order of magnitudes from αEM = 1
137 !

Weak currents are weak because of the mass of the propagator, NOT
BECAUSE of the small coupling!
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Muon Decay

The
most probable
configuration is when
the neutrinos recoil
against the electron
taking p?e = mµ/2

Reminder:
For a decay µ→ e + ν̄e + νµ:

dΓ = 1
2(2π5)

¯|M|2
2|mµ|

δ(4)(qe + k ′ν̄e
+ kνµ + pµ)

d3k
2Ek

d3q
2Eq

d3k ′
2Ek′

M =
(

GF√
2

ūdγµ
1
2 (1− γ5)uu

)
M∝ G2

F m2
µ

Γµ =
G2

F m5
µ

192π3 ∝ G2
F m2

µ

With dimensional arguments:
Γµ = G2

F mn
µ

[E ] = ([E ]−2)2[E ]n

n = 5 77 / 134
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Universality

Universality means that for all matter generations (leptons and quarks)
the weak coupling are the same.
First check with lepton τ decay.

Measuring the two lifetimes
and the branching ratio (and
taking into account small
phase space difference ρτ

ρµ
)

we get:

gµ
gτ = 1.001± 0.003

Γ(µ− → e−ν̄eνµ) = 1
τµ

Γ(τ− → e−ν̄eντ ) = BR(τ− → e−ν̄eντ )
ττ

Γ(µ− → e−ν̄eνµ)
Γ(τ− → e−ν̄eντ ) = 1

τµ

ττ
BR(τ− → e−ν̄eντ ) exp

Γ(µ− → e−ν̄eνµ)
Γ(τ− → e−ν̄eντ ) =

g2
e g2
µm5

µρµ

g2
e g2
τm5

τρτ
=

g2
µ

g2
τ

m5
µ

m5
τ

ρµ
ρτ

V−A
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Pion Decay

Understanding the interplay of Parity violation and momentum
conservation. Consider charged pion decay:

For the moment we don’t know how W
boson couples with π meson. Describe it
with a Form Factor Fµ = fπpµ

Γ = |pν |
8πm2

π

(
|M|2

)
〈
|M|2

〉
=
(

gW
2MW

)4
f 2
πm2

`(m2
π −m2

`)

Γ = f 2
π

πm3
π

(
gW

4MW

)4
m2
`(m2

π −m2
`)

We don’t know f 2
π but we can calculate the

ratio of BR:

Γ(π → eνe)
Γ(π → µνµ) = m2

e(m2
π −m2

e)2

m2
µ(m2

π −m2
µ)2
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Pion Decay

Two competing factors:
larger phase space for electron decay
Conservation of angular momentum Spin(π+) says that ` and ν̄`
have opposite spin directions. ν̄ is alway RH (positive helicity) thus
also ` should have positive helicity which is possibile only for very
limited phase spaceof the electron (larger for muon)
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Universality of Weak interaction: Hadrons
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GIM Mechanism
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FCNC Today
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BS → µµ and Bd → µµ
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Third Generation
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CKM Matrix
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Unitarity triangle
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Diagrams
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Experimental Checks

Weinberg Angle
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Z Boson
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Experimental Checks

Summary
Charged Current (CC):

JµCC ,` = g
s
√

2
¯̀γµ(1− γ5)ν`

JµCC ,quarks = g
s
√

2
ūiγ

µ(1− γ5)VCKM,i,jdj

Neutral Current (NC):

JµNC = g
2 cos θW

f̄ γµ(C f
V − C f

Aγ
5)f

e = g sin θW

MZ = MW
cos θW

M2
W sin2 θW = πα√

2GF

fermion CV CA
ν`

1
2 0.5 1

2 0.5
` − 1

2 + 2 sin2 θW -0.04 − 1
2 -0.5

u,c,t quarks 1
2 −

4
3 sin2 θW 0.19 1

2 0.5
d,s,b quarks − 1

2 + 2
3 sin2 θW -0.35 − 1

2 -0.5
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Discovery of W and Z Bosons
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Experimental Checks

Characteristics of W bosons decays
Taking into account color factors and possible decay modes of W boson we have:

Γ(W → eν̄e) = Γ(W → µν̄µ) = Γ(W → τ ν̄τ ) = Γ(W → `ν`)
Γ(W → ud̄) = Γ(W → cs̄) = 3Γ(W → `ν`)

Γ(W → `ν`) =
(

g√
2

)2 MW
24π = 1

2
GF M3

W
3π
√

2
h 225MeV

One large momentum lepton (High-PT ) (electron or muon)
One neutrino → undetected → unbalance of momentum in transverse plane
⇒ Missing transverse energy (or momentum) ET/

How much is “High-PT ”?. In W rest frame (θ is the polar angle wrt to the beam)

p2
T` = ŝ

4 sin2 θ cos θ =
√

1− 4pT`
ŝ

d cos θ
dp2

T`
= 2

ŝ
1

cos θ
dσ

dp2
T`

= dσ
d cos θ ×

d cos θ
dp2

T`
∼ dσ

d cos θ ×
1

cos θ
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Experimental Checks

W boson kinematics
Singularity for θ = π/2 → jacobian peak. Jacobian peak is spoiled by W
boson transverse boost, measurement
Invariant mass of W boson cannot be reconstructed (neutrino in final
state).
A related quantity is transverse mass (”Invariant mass in the transverse
plane”):

M`ν
T =

√
2p`T pν` (1− cosφ)

Less sensitive to momentum of W boson
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SppS, Tevatron,LHC
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Standard Model
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SM Electroweak Fits
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Measuring W Boson Mass
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W Boson Mass: Experimental Challenges
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Z boson
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Experimental Checks

Z Boson width

Z boson can decay in all known fermions except top quarks
Partial widths Γ(Z → f f̄ ) can be obtained by taking:

Γ(W → `ν`) =
(

g√
2

)2 MW
24π g → g

cos θW
and MW → MZ

and multiplying [C f
V

2 + C f
A

2]

Γ(Z → νν̄) = g2

cos2 θW

MZ
48π [C f

V
2 + C f

A
2]

Γ(Z → e+e−) = Γ(Z → µ+µ−) = Γ(Z → τ+τ−) = 84MeV
Γ(Z → νe ν̄e) = Γ(Z → νµµ̄) = Γ(Z → ντ ν̄τ )

Γ(Z → dd̄) = Γ(Z → ss̄) = Γ(Z → bb̄) = 118MeV
Γ(Z → uū) = Γ(Z → cc̄) = 92MeV
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Number of neutrinos
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Z Lineshape at LEP
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Experimental Checks

Forward-Backward Asymmetries

Let us revisit process like e+e− → µ+µ−.
For QED (exchange of γ boson):

dσ
dΩ = α2

4s (1 + cos2 θ)

⇒ symmetrical in θ.
In addition to γ there is the exchange of a
Z boson (both vector and axial couplings).
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Forward-Backward Lepton Aymmetries

dσ
d cos θ =πα

s2 [(1 + cos2 θ) + FγZ (cos θ) s(s −M2
Z )

(s −M2
Z )2 + M2

Z Γ2
Z

+

+ FZ (cos θ) s2

(s −M2
Z )2 + M2

Z Γ2
Z

]

FγZ (cos θ) = QeQµ

4 sin2 θW cos2 θW
[2ge

V gµV (1 + cos2θ) + 4ge
Z g f

A cos θ]

FZ (cos θ) = 1
16 sin4 θW cos4 θw

[(ge
V

2 + ge
A

2)(gµV
2 + gµA

2)(1 + cos2 θ) + 8ge
V ge

AgµV gµA cos θ]

Asymmetrical term ∝ cos θ appears.
On resonance

√
s = MZ :

γ?Z interference term vanishes
γ term contributes ∼ 1%
Z contribution dominates

Off resonance: s = (MZ − 3GeV )2 γ?Z counts 0.2%
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Forward Backward asymmetry at LEP
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Forward Backward asymmetry at LHC
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sin2 θW ,eff
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Measurements of sin2 θW ,eff
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anomalous Triple Gauge Couplings
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What you should know

Revised the basic of the EWK theory – basic principle and how it
was built
Revised few fundamental measurements
Understand what are the EWK measurements relevant for LHC

Thank you for your attention !
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