

Introduction

- □ In particle physics, we build so-called multi-purpose detectors
- These are dedicated instruments that measure particular observables: vertex, track positions, particle IDs, momentum, energy, time, ...
- In colliding-beam experiments, subdetectors are placed in layers around the interaction region in cylindrical geometry, like onion shells
- In fixed-target experiments, they are stacked behind the target in a fixed fiducial volume
- Though physics processes can be manifold and complex, we only encounter six particles in the final state: e^{\pm} , μ^{\pm} , π^{\pm} , K^{\pm} , p^{\pm} , γ
- In matter, these particles interact electromagnetically

Multipurpose Detectors at LHC

- Each LHC experiment has about 100 million sensors
- □ Think that your 6MP digital camera takes 40 million pictures/s

Outline

- Ionization, excitation & electron in gases
- □ Gaseous tracking detectors
- □ Momentum measurements
- Solid state detectors
- Electrons and Photons in Matter
- Electromagnetic Calorimeters
- □ Hadronic Calorimeters
- Particle Flow Calorimeters
- Particle identification detectors

Ionization, Excitation & Electrons in Gases

Energy Loss of Charged Particles

- Depending on the photon energy $h\omega$, different processes occur:
 - 1) For h $\omega < E_{\text{excitation}}$ [optical region] $\approx 2 \text{ eV} \Rightarrow \varepsilon > 1$ (real) \rightarrow em shock wave
 - $\rightarrow \theta_c$ real for v > c/n
 - \rightarrow emission of real photon is possible if particle velocity is <u>larger</u> than phase velocity c/n of light (Cherenkov effect)
 - 2) For 2 eV < h ω < 5 keV, ε is complex with $\varepsilon_1 < 1$, $\varepsilon_2 > 0$
 - \rightarrow production of virtual photons only
 - \rightarrow excitation and ionization of medium
 - 3) For hous > 5keV absorption becomes small: $\varepsilon_2 << 1$, but $\varepsilon_1 < 1$
 - \rightarrow Threshold velocity for Cherenkov effect is larger than c
 - \rightarrow Radiation is emitted below this

threshold if medium has discontinuities \rightarrow transition radiation G. Eigen, HASCO 19-07-16 Göttingen

Energy Loss in Different Materials

- The mean energy loss shows minimum at ~ same $\beta\gamma$ value (3-4) for all materials $10_{8} \sim 1/\beta^2$ Relativistic rise
- 8 Relativistic rise is higher in 6 $-dE/dx\rangle$ (MeV g $^{-1}$ cm²) H₂ liquid gases than in liquids and solids 5 4 Energy loss at minimum He gas 3 2.5 H₂ gas: 4.10 H₂ liquid: 3.97 Fe 2 Sn $2.35 - 0.28 \ln(Z)$ 2.0 $\langle -dE/dx \rangle$ (MeV g $^{-1}$ cm²) 0 .5 0.1 1.0 100 1000 10 10000 $\beta \gamma = p/Mc$ + Solids Gases 1000 0.11.0 10 100Muon momentum (GeV/c) 1.0 0.1 100 1000 Pion momentum (GeV/c) Li Be B C NO Ne -H Fe He Sn 0.5 2 5 10 50 100 20 0.1 1.0 10 100 1000 10000 Z. Proton momentum (GeV/c)

Minimum energy loss can be parameterized by: 2.35- 0.28 ln(Z) G. Eigen, HASCO 19-07-16 Göttingen

dE/dx for Particle Identification

Mobility of Ions

- A charged particle traversing a gas produces e-i+ pairs
- \Box A cloud of positive ions, i⁺, placed in an electric field of strength \tilde{E} , is accelerated by the E field and decelerated by collisions \Rightarrow the motion can be described by a constant drift velocity $\vec{v}_{\rm D}$
- According to measurements, \vec{v}_D is proportional to E/P

 $\vec{\mathbf{v}}_{\mathbf{b}}^{+} = \mu^{+}\vec{\mathbf{E}}\frac{\mathbf{P}_{\mathbf{o}}}{\mathbf{p}}$ where μ^+ is the ion mobility, units [cm²/(Vs)] P₀=760 Torr

For E=1kV/cm He⁺ in He: $\mu^{+}= 10.2 \text{ cm}^2/(\text{Vs}) \text{ v}_{\text{D}}^{+}= 0.01 \text{ cm}/\mu\text{s}$ Ar⁺ in Ar: 1.7 " 0.0017" **Examples**: CH_4^+ in Ar: (OCH₃)CH₂⁺ in (OCH₃)CH₂ 1.87 0.00187 0.26 0.00026 "

bressure

- Mobility is high (low) for small (big) atoms/molecules
- Drift velocities of electrons are 1-10 cm/ μ s

Drift Velocity

The drift velocity can be expressed in terms of mean free path λ , thermal velocity u, electric field \vec{E} , charge q and particle mass m

$$\vec{v}_{D} = \frac{q\vec{E}}{m} \left\{ \frac{2}{3} \left\langle \frac{\lambda_{e}(u)}{u} \right\rangle + \frac{1}{3} \left\langle \frac{d\lambda_{e}(u)}{du} \right\rangle \right\}$$

□ For some gases v_D is independent of \vec{E} in some range (C_2H_4) or is only slightly dependent on \vec{E} (Ar) 14

Electron drift velocities of are ~1-10cm/μs and e⁻ mean free paths are considerably larger: λ_e=λ_{ion}·5.66

Drift of Electrons in É & B Fields

- □ A charge in an electromagnetic field moving through a gas-filled volume is subject to the force $m\vec{v} = q(\vec{E} + \vec{v} \times \vec{B}) + m\vec{A}(t)$ ← Langevin
- Stochastic acceleration averaged over time compensates translational acceleration where τ is average time between 2 collisions

$$\left\langle \overrightarrow{A}(\dagger) \right\rangle = -\frac{\overrightarrow{v_{D}}}{\tau}$$

Coulomb

$$\vec{\mathbf{v}}_{\mathsf{D}} = \frac{\mu}{1 + \omega^2 \tau^2} \left[\vec{\mathsf{E}} + \frac{\vec{\mathsf{E}} \times \vec{\mathsf{B}}}{\left| \vec{\mathsf{B}} \right|} \omega \tau + \frac{(\vec{\mathsf{E}} \cdot \vec{\mathsf{B}}) \cdot \vec{\mathsf{B}}}{\left| \vec{\mathsf{B}} \right|^2} \omega^2 \tau^2 \right]$$

In the presence of
$$\vec{E} \& \vec{B}$$
 fields the drift velocity has 3 terms
i) one parallel to \vec{E}
ii) one parallel to \vec{B}
iii) one perpendicular to plane spanned by $\vec{E} \& \vec{B}$
If \vec{E} and \vec{B} are not parallel, there is angle between \vec{v}_D and \vec{E}
called Lorentz angle
G. Figen HASCO 19-07-16 Göttingen
 \vec{E} figen HASCO 19-07-16 Göttingen
 \vec{E} iii) \vec{E} iii)

Diffusion of Ions in a Field-free Gas

- A charge distribution Q(t) localized at (0,0,0) at t=0 is diffused by multiple scattering
 Charge density distribution for the charge density density density density density density density density den
- At time t, Q(t) is Gaussian with center at origin
- □ The rms spread is proportional to the diffusion coefficient: $D = \frac{1}{3} \int u\lambda(\varepsilon)F(\varepsilon)d\varepsilon$ with Maxwell-Boltzmann distribution $F(\varepsilon) = c \cdot \sqrt{\varepsilon} \cdot exp(-\frac{\varepsilon}{1-\varepsilon})$
- **T** For energy-independent λ we obtain $D = \frac{1}{3} u \lambda$
- For a classical ideal gas we have

where $\sigma(\epsilon)$ is the collision cross section and N is number of molecules per unit volume G. Eigen, HASCO 19-07-16 Göttingen $N = 2.69 \times 10^{19} \frac{P}{760 \text{ kT}} \frac{273}{\text{kT}} \frac{\text{molecule}}{\text{cm}^3}$

Charge density distribution for 5 equidistant time intervalls:

E: kinetic energy

 $\lambda(\varepsilon) = \frac{1}{N\sigma(\varepsilon)}$

Diffusion of Electrons in È & B Fields

- Diffusion parallel (L) and perpendicular (T) to the drift direction depends on the nature of the gas
- Typically faster gases yield smaller diffusion than slower gases

mixture at 4T [67].

The spatial resolution is depends on time and the diffusion coefficient

Figure 28.5: Electron longitudinal diffusion (σ_L) (dashed lines) and transverse

diffusion (σ_T) (full lines) for 1 cm of drift. The dotted line shows σ_T for the P10

 $\left(\mathbf{1}+\omega^2\tau^2\right)^{-1}$

G. Eigen, HASCO 19-07-16 Göttingen

t: time between 2 collisions

Gaseous Tracking Detectors

Proportional Counter

 If we apply a high electric field between anode wire and cathode cage (10⁴-10⁵ V/cm), electrons from the primary ionization gain enough energy between 2 collisions to cause further ionizations

- For certain E fields & gas pressures, A is independent of the amount of primary ionization => observed signal is proportional to primary ionization
- This domain of field strengths is called proportional region \Rightarrow here A $\approx 10^4$ - 10^6
- \square Achieve high field strengths with thin wires (20 μm -100 μm) as anode
- Amplification will start in close vicinity to anode

First Townsend Coefficient

For fast gases, Townsend coefficients are considerably smaller than those for slow gases

Gas Amplification

- In addition to the secondary electrons, ionization processes due to UV photons contribute
- □ These UV photons originate from de-excitations of atoms excited in collisions & produce e⁻ via photoeffect in gas atoms or cathode
- \Rightarrow Assume that in avalanche formation $N_0 \cdot A$ electrons are produced from N_0 primary electrons
- \Rightarrow From UV photons additional $N_0 \cdot A \cdot \gamma$ photoelectrons are formed ($\gamma \ll 1$)
- \Rightarrow By gas amplification these photoelectrons produce $N_0 \cdot A^2 \cdot \gamma$ electrons
- ⇒ From them another $N_0 \cdot A^2 \cdot \gamma^2$ photoelectrons are formed which in turn produce $N_0 \cdot A^3 \cdot \gamma^2$ electrons, and so on
- Summing up all terms we get the total gas amplification factor A_{γ}

$$N_{o}A\sum_{n\geq 0} (A\gamma)^{n} = \frac{N_{o}A}{1-A\cdot\gamma} \coloneqq N_{o}A_{\gamma}$$

For $A \cdot \gamma \rightarrow 1$, A_{γ} diverges & signal no longer depends on primary ionization \Rightarrow This is called Geiger-Müller region ($A_{\gamma} \sim 10^8 - 10^{10}$) G. Eigen, HASCO 19-07-16 Göttingen

<u>Multi-Wire Proportional Chamber</u>

- In a multi-wire proportional chamber (MWPC) a plane of anode wires is sandwiched between cathode planes
- Cathode planes are segmented into strips; strips in one (other) plane run parallel (perpendicular) to the anode wires

- □ A traversing charged particle liberates e⁻ i⁺ pair along its path
- □ e⁻ are accelerated towards the anode wire & i⁺ towards cathode plane
- The E field is chosen sufficiently high so that secondary ionization sets in and an avalanche is formed near the anode wire and signals are induced on the cathode strips
- anode wires: 20 μm thick Au-plated W, Al; 2 mm spacing counting gas: Ar, Kr, or Xe with admixture of CO₂, CH₄, isobutane, ... amplification: 10⁵; efficiency: ~100% with cathode readout measure x and y positions
 G. Eigen, HASCO 19-07-16 Göttingen

$$x = L \frac{Q_A}{Q_A + Q_B - 2b}$$

Accuracies are ~0.4% of wire length

<u>Drift</u> <u>Chamber</u>

- We can obtain spatial information by measuring the drift time of electrons produced in ionization processes
- □ The drift time ∆t between primary ionization t₀ & the time t₁ when e⁻ enters the high E field generating an avalanche is correlated with the rising edge of the anode pulse
- ⇒ For constant drift velocity v_D⁻(t) drift distance for this ∆t interval is

 $\mathbf{z} = \mathbf{v}_{\mathsf{D}}^{-} \left(\mathbf{t}_{1} - \mathbf{t}_{0} \right) = \mathbf{v}_{\mathsf{D}}^{-} \Delta \mathbf{t}$

- \Box Constant \vec{v}_D results from constant E
- □ This is not achieved in MWPCs
 ⇒ Need to introduce a field wire at

Choice of gas Ar- C_4H_{10} (purity)

- potential -HV1 between anode wires
- TER

Use slower v-_D to optimize spatial → resolution ⇒ large DC: 55-200 µm, small DC: 30-70 µm G. Eigen, HASCO 19-07-16 Göttingen

Cylindrical Drift Chamber

- \square \vec{E} field lines lie in the r- ϕ plane, perpendicular to axial \vec{B} field
- The Ê field is generated by a suitable arrangement of potential wires, which are parallel to each other surrounding a single signal wire
- □ A large fraction of layers (typically ≥ 50%) have wires running parallel to B field (axial layers) & rest have wires running skew under stereo angle γ =±few ⁰ wrt B field axis (stereo layer)
- \square Axial wires only give r- ϕ position, stereo wires allow to get z position
- One determines r-φ position from all axial wires, then the stereo wires are added by moving along z-position till the r-φ fits with that of axial layers
- For each signal wire t₀ and the time-to-distance relation need to be measured

Time Projection Chamber

- The Time Projection Chamber combines principles of a drift chamber & proportional chambers to measure 3-dimensional space points
- \Box A high \vec{E} field is placed parallel to a high \vec{B} field (1.5 T)
 - \rightarrow no Lorentz force on drifting e⁻

Time Projection Chamber

- Electrons produced by ionization of a charged track traversing volume drift towards endcap
- Image is broadened by diffusion during drift process
- Broadening is considerably reduced by strong B field
- e-are forced to perform helical movement around
 B field lines
- Transverse diffusion coefficient is reduced by $1/(1+\omega^2\tau^2)$, with $\omega=(e/m)|\dot{B}| \& \tau$ is mean free time between 2 collisions
 - J Spatial resolution: 150-200 μm

Gas Electron Multiplier

- Position-sensitive gas detectors based on wire structure are limited by diffusion processes and space charge effects to accuracies of 50-100 μm
- A GEM detector consist of a thin Cu-Kapton-Cu sandwich into which a high density of holes is chemically processed: 25-150 μm &, 50-200 μm pitch
- A high E field 50-70 kV/cm is applied across holes
 electron produces avalanche in hole
- Coupled with a drift electrode above and a readout electrode below it acts as a highly performing micro amplifying detector
- Amplification and detection are decoupled
 ⇒ operate readout at zero potential
- With several layers gain of 10⁴ is achievable GEMs have higher rate capability than MWPCs G. Eigen, HASCO 19-07-16 Göttingen

<u>Micro-Mesh GA</u>seous <u>Structure</u>

- The micro-mesh gaseous structure is a thin parallel-plate avalanche counter
- It has a drift region & a narrow amplification gap (25-150 μm) between a thin micro mesh & the readout electrode (conductive strips or pads printed on insulator board)
- Primary e⁻ drift through mesh holes into amplification gap where they are amplified
- Homogeneous E fields, 1 kV/cm in drift region & 50-70 kV/cm in amplification gap

- Excellent spatial resolution of 12 μm, good time resolution and good energy resolution for 6 keV X-rays of 12% at FWHM
- New developments of MicroMEGAS with pixel readout will integrate amplification grid with the CMOS readout, use 1 μm Al grid above
 50 μm ⇒ expect excellent spatial and time resolutions

Momentum Measurements

Deflections in Magnetic Fields

- □ Particles with momenta p_x , $p_y \ll p_z$ placed in a magnetic field \vec{B} =(0, B_v ,0) are deflected along a circular orbit with radius $\tilde{R} = p/(e|\tilde{B}|)$
- If magnetic field is active on length L_{+} , $2\sin\frac{\theta}{2} = \frac{L_{+}}{P} = -\frac{eB_{y}L_{+}}{P}$ the angular deflection is
- $\Delta \mathbf{p} = \mathbf{p} \cdot \sin \theta \approx -\mathbf{e} \mathbf{B} \mathbf{L} = -\mathbf{e} \int \mathbf{B} \mathbf{d} \mathbf{z}$ □ This leads to a change in transverse momentum by in good approximation for small deflection angles
- The error in position measurement $\sigma(x)$ leads to an error in the momentum measurement via

$$\frac{\sigma_{\rm p}}{\rm p} = \frac{2\rm p}{\Delta \rm p_{\rm x}} \frac{\sigma(\rm x)}{\rm h}$$

where h is lever arm for angle measurement before & after magnet

e.g.: for |B|=0.5 Tm, $\sigma(x)=300 \mu \text{m}$ & h=3cm

→ $\sigma_p/p\sim 1.3\%$ for p= 100 GeV/c, $\rightarrow \sigma_p/p^2 \sim 1.3 \times 10^{-4}/GeV$

G. Eigen, HASCO 19-07-16 Göttingen

$$\theta/2 R$$

 $\theta/2 R$
 L_t

projected (transverse) length

Momentum Resolution

- The momentum resolution typically has a contribution from the position measurement and one from multiple scattering
- We focus on important case of solenoidal field
 → Here we have cylindrical geometry (r, φ, z) where B=(0, 0, B_z)
- If position is measured at 3 equidistant points along the track L_t, the sagitta s of circular orbit is
- □ Since R=p/(0.3·B) $\rightarrow \theta \approx L_t/R \approx 0.3 \cdot B \cdot L_t/p$, yielding $s = \frac{1}{2}$

that is is determined by 3 measurements to precision

For N measurements we get statistical factor of $\sqrt{\frac{720}{100}}$ instead of $\sqrt{\frac{3}{2}}$

G. Eigen, HASCO 19-07-16 Göttingen

$$x/2$$

 y_{plane}
 y_{plane}
 y_{plane}
 y_{plane}
 y_{plane}
 y_{plane}
 y_{plane}

$$s = R - R \cos \frac{\theta}{2} \approx \frac{R\theta^2}{8}$$

$$= 0.3 \frac{BL_{\tau}^2}{8p}$$

 $\sigma_{s} = \sqrt{3}/2\sigma_{x}$

Momentum Resolution

I If $\sigma_{r\phi}$ is measurement error in $(r-\phi)$ plane, momentum component in that plane, p_t , is measured with errors:

□ Multiple scattering yields mean transverse p change

$$\Delta \mathbf{p}_{t}^{MS} = 21 \text{MeV} \left(\frac{\mathbf{L}_{t}}{\mathbf{X}_{0}} \right)^{1/2}$$
Transverse path length in Fe

 $\hfill\square$ This leads to an multiple scattering error of

$$\left(\frac{\sigma_{\mathbf{p}_{t}}}{\mathbf{p}_{t}}\right)^{\mathrm{MS}} = \frac{0.05}{\mathrm{BL}_{t}} \sqrt{\frac{1.43\mathrm{L}_{t}}{\mathrm{X}_{0}}}$$

Solid State Detectors

Properties of Silicon

- □ Si has 4 valence e⁻
- \Rightarrow Each valence e⁻ is coupled to e⁻ of neighboring atom via covalent bound
- ☐ At T=0, all e⁻ are bound & cannot conduct any current
- \Rightarrow full valence band, empty conduction band, separation: 1.1 eV
- At room temperature thermal energy is sufficient to liberate e⁻ into conduction band (10¹¹/cm³)
- However, usually we add controlled level of impurities
 - i) Elements with 3 valence e⁻ (p-type)
 B, Ga, In ⇒ hole carriers, acceptor impurity
 ii) Elements with E valence of (n type)
 - ii) Elements with 5 valence e^- (n-type) Sb, P, As $\Rightarrow e^-$ carriers, donor impurity
- Concentration of electrons (n) and holes (p) satisfies

$$n \cdot p = N_c N_v \exp\left(\frac{E_g}{kT}\right) = const$$
6. Eigen, HASCO 19-07-16 Göttingen

 N_v : # of allowed levels in valence band N_c : # of allowed levels in conduction band E_g : energy gap

□ When ionization liberates charge in depletion layer, e⁻ & h⁺ drift apart due to strong internal field & produce a current G. Eigen, HASCO 19-07-16 Göttingen

Si Microstrip Detectors

- □ A typical n-type Si microstrip detector has
 - > p⁺n junction: $N_p \approx 10^{15} \text{ cm}^{-3}$, $N_n \approx 1-5 \times 10^{15} \text{ cm}^{-3}$
 - > N-type bulk: ρ >2 k Ω cm, thickness 300 μ m
 - > Operating voltage < 200 V</p>
 - n⁺ layer on the backplane to improve ohmic contact
 - Aluminum metalization
- □ About 30000 e⁻h⁺ pairs are liberated by a traversing charged particle via dE/dx|_{ion}
- Charges drift towards electrodes where they produce a signal on that strip

Each strip is coupled to a preamplifier

Use of AC-coupling blocks leakage current from preamplifier G. Eigen, HASCO 19-07-16 Göttingen

Noise

- The main source of noise is due to statistical fluctuations in the number of carriers, leading to changes in conductivity
- □ The most important <u>noise</u> contributions are (Equivalent Noise Charge)
 - leakage current (ENC_I)
 - > detector capacity (\overline{ENC}_c) _
 - detector parallel resistor (ENC_{Rp})
 - detector serial resistor (ENC_{Rs})
- The overall noise is the quadratic sum of all contributions

Alternate circuit diagram of a silicon detector.

□ The detector capacity is typically the dominant noise source

Position Resolution

- The dE/dx energy loss produces a Landau-like distribution that is different for pions and protons of the same momentum
- For a single strip the position resolution is

 $\sigma_{x} = \frac{p}{\sqrt{12}}$

- For two or more strip hits we use the centerof-gravity method
- Here, a large signal-to-noise ratio improves the spatial resolution

$$\sigma_x \propto \frac{p}{S/N}$$

Diffusion broadens the spatial resolution
 ⇒ broadening depends on the drift length

ATLAS <u>Semi-Conductor</u> <u>Tracker</u>

4 layers with 2 planes each, $r-\phi$ strips and $r-\phi$ strips slightly tilted by 40 mrad

- In ϕ , modules are tilted wrt to surface of support structure by (11°, 11°, 11.25° & 11.5°)
- ~ 61 m² of Si (15392 Si wafers)
 - $\sim 6.3 \times 10^6$ readout channels

SCT module

ATLAS SCT Performance

Power of Microstrip Detectors

□ The power of Si vertex detector measurements (ALEPH)

Pixel Detectors

- Pixel detectors are made of an array of small Si pixels, i.e. physically isolated pads, providing both r-φ & z measurements
- Pixels are bump-bonded to a pixellated readout chip
- Advantage: excellent 2-track resolution, take high occupancies
- They are used in colliding beam experimenter e.g. WA97, DELPHI, ATLAS, CMS, ...
- □ Typical pixel dimensions: WA97: 75×500 μ m² \Rightarrow 5×10⁵ pixels DELPHI: 320×320 μ m² \Rightarrow 1.2×10⁶ pixels ATLAS: 50×300 μ m² \Rightarrow 8.×10⁷ pixels CMS: 150×150 μ m² \Rightarrow 3.9×10⁷ pixels G. Eigen, HASCO 19-07-16 Göttingen

ATLAS Pixel Detector Performance

Cosmic muon
 traversing through
 the pixel detector
 and SCT

3D Si Detectors

□ 3D sensor concept

- □ Advantage: low depletion voltage, small drift length
- □ Need to be cooled to -30° C to achieve high efficiency after radiation

Electrons and Photons in Matter

Energy Loss of Electrons & Positrons

Electrons & positrons suffer energy losses by radiation in addition to the energy losses by collisions (ionization)

$$\left(\frac{dE}{dx}\right)_{tot} = \left(\frac{dE}{dx}\right)_{rad} + \left(\frac{dE}{dx}\right)_{coll}$$

- The basic mechanism of energy loss via collisions is also valid for e[±], but Bethe-Bloch must be modified for 3 reasons:
 i) their small mass ⇒ incident particle may be deflected
 - ii) For e⁻ we have collisions between identical particles
 ⇒ we must take into account indistinguishable particles
 - \Rightarrow Obtain some modifications, e.g. $T_{max}=T_e/2$

iii) e⁺ and e⁻ are fermions while heavy particle are typically bosons

Critical Energy and Radiation Length

Critical energy E_c is the energy where (dE/dx)_{rad}=(dE/dx)_{coll} for each material

The radiation length depends only on parameters of the material

$$\frac{1}{X_{o}} \cong 4\alpha r_{e}^{2} \rho \frac{N_{o}}{A} \left\{ Z^{2} \left[\ln(184.15 \cdot Z^{-\frac{1}{3}}) - f(Z) \right] + Z \ln(1194 \cdot Z^{-\frac{2}{3}}) \right\}$$

$$N_{o}: A \text{ vogadro's } \# 6.022 \times 10^{23} \text{ mole}^{-1} \text{ protons} \qquad \text{electrons}$$

$$G. Eigen, HASCO 19-07-16 \text{ Göttingen} \qquad \text{protons} \qquad \text{electrons}$$

Detection of Photons

- □ A photon traversing a medium can experience different processes
 - i) Photoelectric absorption
 - ii) Rayleigh scattering
 - iii) Compton scattering
 - iv) Pair creation in nucleon/electron field
 - v) Photonuclear interaction
- □ All processes reduce initial intensity

 $\mathbf{I}(\mathbf{z}) = \mathbf{I}_0 \cdot \exp(-\mu \mathbf{z})$

where μ is linear absorption coefficient that is related to photon absorption cross section σ by $\mu = \sigma N_0 \rho / A$

- □ Photoelectric absorption decreases as $\sim 1/E_{\gamma}^{3.5}$ & increases as Z⁵ (e.g. for energies between K&L)
- **Compton scattering** decreases as $1/E_{\gamma}$ & increases as Z

Pair creation requires minimum energy of E≥2m_ec² G. Eigen, HASCO 19-07-16 Göttingen

Electron-Photon Showers

- ☐ At high energy a photon is likely to convert into e⁺e⁻
- e[±] particles loose energy via bremsstrahlung producing new γ's that are likely to convert into e⁺e⁻
- Result is a cascade or shower of e⁺, e⁻, & γ's
- Process stops once energies of e⁺, e⁻, & γ's become so small that energy loss of γ's occurs
 preferentially via photoelectric absorption & that energy loss of e⁺ & e⁻ occurs preferentially via ionization
- A similar shower is obtained if
 - we start with a high-energy e⁻ or e⁺
 - G. Eigen, HASCO 19-07-16 Göttingen

Model for Electron-Photon Showers

- High energy photons & e⁻ produce a shower of γ, e⁺ & e⁻ via e⁺e⁻ pair creation & bremsstrahlung
- □ This process stops if energy of γ , e^+ & e^- approaches the critical energy
- A simplified model of an em shower looks like this:
 - An initial photon of energy E₀ produces e⁺e⁻ pair with probability of 7/9 after passing a 1X₀ thick layer of material
 ⇒ e⁺ & e⁻ each have average energy of E₀/2
 - > If $E_0/2 > E_c$, $e^+ \& e^-$ loose energy via bremsstrahlung
 - ⇒ Energy decreases to $E_0/(2f)$ after traversing second X_0 of material ⇒ Radiated photon has energy $E_{\gamma}=E_0/2 - E_0/(2f) [E_0/2>E_{\gamma}>E_0/(2f)]$
 - > So after $2X_0$ average # of particles is 4: e^+ , e^- , γ , γ \Rightarrow Each photon produces another e^+e^- pair & each e^+ & e^- radiate
 - another γ after passing through another X_0 thick layer
 - > After n generations corresponding to thickness $n \cdot X_0$ we obtain $N_p = 2^{n_{max}} = E_0/E_c$ particles at shower maximum with average energies of $E_0/(2^{n_{max}})$, where $n_{max} = \ln(E_0/E_c)/\ln 2$

Cascade breaks off if E₀/(2n)≈E_c G. Eigen, HASCO 19-07-16 Göttingen

Electromagnetic Calorimeters

Characteristics of $e^--\gamma$ Shower

- The most exact calculations of detailed shower development is obtained with MC simulations (EGS)
- \square We obtain the following properties of the e⁻- γ shower
 - i) Number of particles at shower maximum, N_p , is proportional to E_0
 - ii) Total track length s of e^- & e^+ , is proportional to E_0
 - iii) Depth at which shower maximum occurs, X_{max} , increases as log

$$\frac{X_{\max}}{X_{0}} = \ln\left(\frac{E_{0}}{E_{c}}\right) + t$$

where t=-0.5 for e^- & t=0.5 for photons

- □ Example: 1 GeV photon in NaI crystal: X_0 =2.59 cm, E_c =12.5 MeV $\Rightarrow N_p$ =80, n=6.3, & X_{max} =11.8 cm
- Basically 2 types of em calorimeters

 homogeneous shower counter (inorganic crystals [NaI, CsI(Tl), BGO, BaF₂, PbWO₄, LSO, LYSO], Pb glass, liquid noble gases [Ar, Kr, Xe])
 sampling shower calorimeter
 Eigen, HASCO 19-07-16 Göttingen

Longitudinal & Transverse Distributions

- $\Box \text{ Longitudinal energy distribution is parameterized by } \frac{dE}{dt} = E_0 C t^{\alpha} e^{-\beta t}$ with $\beta = 0.5$, $\alpha = \beta t_{max}$ and $c = \beta^{\alpha+1} / \Gamma(\alpha+1)$
- □ Transverse shower dimensions results from MS of low-energy e⁺ & e⁻
- \Box Useful unit for transverse shower is Molière radius $R_{M} = 21 \text{ MeV X}_{0} / E_{c}$
- □ Transverse energy distribution in units of R_M independent of material → inside $1R_M$ 90% of shower is contained → inside $3R_M$, 99% of shower

Energy Resolution of Homogeneous Calorimeter

BABAR EMC Performance

- Energy & angular resolution of BABAR CsI(Tl) crystal calorimeter
 - Use photons & electrons from physics processes
 - Low-energy point is obtained from radioactive source

SAMPLING SHOWER DETECTORS

- Sampling calorimeters are devices in which the fluctuations of energy degradation & energy measurement are separated in alternating layers of different substances
- The choices for passive absorber are plates of Fe, Cu, W, Pb, U
- For energy measurement a gas mixture, liquid noble gases, or plastic scintillators are used
- □ This allows to build rather compact devices & permits optimization for specific experimental requirements $\Rightarrow e^2 \pi$ discrimination
 - \Rightarrow longitudinal shower profile
 - \Rightarrow good angular measurements
 - \Rightarrow good position measurements

- \square Plate thickness p ranges from fraction of X₀ (EM) to few X₀(hadronic)
- Disadvantage is that only a fraction of total energy of em shower is detected (sampling) in active planes resulting in additional sampling fluctuations of the energy discrimination
 G. Eigen, HASCO 19-07-16 Göttingen

Energy Resolution of Sampling Calorimeter

The total energy resolution of a sampling calorimeter is

The sampling fluctuations include multiple scattering and effects of an energy cut-off

G. Eigen, HASCO 19-07-16 Göttingen

The path length fluctuations depend on the density of the medium

N_x: number of crossings in sampling calorimeter=total track length divided by distance between active plates

$$N_{x} = \frac{E_{0}X_{0}}{E_{c}d} = \frac{E_{0}}{\Delta E}$$

An Simulated EM Shower

□ Simulation of em shower using EGS IV

ATLAS Liquid Argon ECAL

ATLAS LIAR ECAL

The ATLAS LiAr calorimeter works well

- Energy response is linear
- \square Energy resolution is

 $\frac{\sigma_{E}}{E} = \frac{0.1}{\sqrt{E}} \oplus 0.007$

G. Eigen, HASCO 19-07-16 Göttingen

Hadronic Calorimeters

Hadron Showers

- Conceptually, energy measurement of hadronic showers is analogous to that of electromagnetic showers, but due to complexity & variety of hadronic processes, a detailed understanding is complicated
- Though elementary processes are well understood, no simple analytical description of hadronic showers exist
- □ Half the energy is used for multiple particle production ($p_{t} \ge 0.35$ GeV), the remaining energy is carried off by fast, leading particles
- □ 2 specific effects limit the energy resolution of hadronic showers
 - i) A considerable part of secondary particles are π^{0} 's, which will propagate electromagnetically without further nuclear interactions Average fraction of hadronic energy converted into π^{0} 's is
 - > $f_{\pi^0} \approx 0.1 \ln(E)$ [GeV] for few GeV $\leq E \leq$ several 100 GeV
 - > Size of π^0 component is largely determined by production in first interaction & by event-by-event fluctuations about the average value

ii) A sizable amount of available energy is converted into excitation or breakup of nuclei \rightarrow only a fraction of this energy will be see G. Eigen, HASCO 19-07-16 Göttingen

Intrinsic Energy Resolution

The intrinsic hadronic energy resolution is:

holding for materials from Al to Pb (exception 238 U)

- □ The level of nuclear effects & level of invisible energy is sensitively measured by comparing the calorimeter response to e & h at the same available energy
 - > Ideally, one wants $e/h \approx 1$
 - ➤ Typical values are e/h≅1.4
 - e/h drops to ~0.7 below 1 GeV
- Unless event-by-event fluctuations in the EM component are not corrected for, $\sigma_F/E \cong 0.45 E^{-1/2}$
- This applies likewise to homogeneous & to sampling calorimeters

e/h ratio in different hadron calorimeters

Compensation Fluctuations

- □ To cure these fluctuations we need to equalize response for e^- & h ⇒ either decrease e^- response or boost h response
- The latter can be achieved in U-scintillator calorimeters
 - Due to nuclear break-up one gets neutron-induced fission liberating about 10 GeV of fission energy
 - > Just need to detect 300-400 MeV to compensate for nuclear deficit measure either the few MeV γ component or the fission neutrons
- Intrinsic resolution for ²³⁸U is

$$\left(\frac{\sigma_E}{E}(U)\right)_{\text{int rinsic}} \cong \frac{0.22}{\sqrt{E \text{ [GeV]}}}$$

- □ This was achieved in the ZEUS calorimeter (U-scintillator)
- □ In addition sampling fluctuations contribute to the total energy resolution $\begin{pmatrix} \sigma_E \\ E \end{pmatrix}_{hadronic}$ where ΔE is energy loss per unit sampling for MIPs

Hadronic sampling fluctuations are approximately twice as large as EM sampling fluctuations G. Eigen, HASCO 19-07-16 Göttingen

Shower Containment

In analogy to X_0 define a hadronic interaction length λ as the length in which a hadron has interacted with probability of 63%

 \Rightarrow L_{0.95}(λ) describes data in few GeV \leq E \leq few 100 GeV within 10%

a,b,c,d: fit parameters

 $t=s/X_0$, $l=s/\lambda$, f: fraction

95% radial shower containment is $R_{0.95} \leq 1\lambda$

G. Eigen, HASCO 19-07-16 Göttingen

Useful parameterization of longitudinal shower development $dE / ds = K \left[w \cdot t^a e^{-bt} + (1 - w) l^c e^{-dl} \right]$

ATLAS Hadron Calorimeters

- \Box Steel-scintillator sampling calorimeter (total thickness ~11 λ)
 - > 14 mm thick steel plates
 - 460 000 3 mm thick scintillator tiles
 - Calorimeter is built in 3 sections: barrel and 2 extended barrels

Characteristics of Hadron Showers

- Energy response in a cell of the ATLAS tile calorimeter showing noise plus showers
- \square Mean energy response is uniform in η and ϕ
- Mean energy deposit is determined by random triggers

Observed Energy Resolution

- Energy resolution of the ATLAS hadron calorimeter
- □ Fe-scintillator tile calorimeter: covers barrel region
 - Test beam measurements yield

Data:
$$\left(\frac{\sigma_E}{E}\right) = \frac{52.1\%}{\sqrt{E}} \oplus 3.0\% \oplus \frac{1.8 \ GeV}{E}$$
 MC: $\left(\frac{\sigma_E}{E}\right) = \frac{48.0\%}{\sqrt{E}} \oplus 3.3\% \oplus \frac{1.5 \ GeV}{E}$

□ e/h ratio is larger than 1 and varies over energy range

Particle Flow Calorimeters

New Concepts: Particle Flow

- □ At the international linear collider (ILC) an excellent jet-energy resolution is crucial to study new particles
- □ Simulate $e^+e^- \rightarrow W^+W^-$ & $e^+e^- \rightarrow ZZ$ for LEP-like detector & LC design with factor of 2 improvement

LEP-like detector

LC design goal

H.Videau

G. Eigen, HASCO 19-07-16 Göttingen

Particle Signatures

Different particles show characteristic signatures in the detector

□ Need appropriate segmentation in ECal & HCal to separate these

Jet Energy Resolution

- □ Jet energy: $E_{jet} = E_{charged} + E_{photons} + E_{neut. had.}$ 65% 25% 10%
- □ Implementing particle flow we have get jet energy resolution

$$\sigma_{\rm E_{jet}}^2 = \sigma_{\rm E_{charged}}^2 + \sigma_{\rm E_{photons}}^2 + \sigma_{\rm E_{neut.had.}}^2 + \sigma_{\rm confusion}^2$$

With anticipated resolutions

$$\sigma_{E_{charged}}^{2} \approx \left(5 \times 10^{-5}\right)^{2} \sum \frac{E_{charged}^{4}}{GeV^{2}} \approx \left(0.02 \text{ GeV}\right)^{2} \frac{1}{10} \sum \left(\frac{E_{charged}}{10 \text{ GeV}}\right)^{4}$$
$$\sigma_{E_{photons}}^{2} \approx \left(0.10\right)^{2} \sum E_{photon} \cdot GeV \approx \left(0.52 \text{ GeV}\right)^{2} \sum \left(\frac{E_{jet}}{100 \text{ GeV}}\right)$$
$$\sigma_{E_{neutral hadrons}}^{2} \approx \left(0.50\right)^{2} \sum E_{neutral hadrons} \cdot GeV \approx \left(1.6 \text{ GeV}\right)^{2} \sum \left(\frac{E_{jet}}{100 \text{ GeV}}\right)^{2}$$

□ Ignoring the (typically) negligible tracking term:

$$\sigma_{E_{jet}}^{2} \approx (0.17)^{2} \left(E_{jet} \cdot GeV \right) + \sigma_{confusion}^{2} \approx (0.3)^{2} \left(E_{jet} \cdot GeV \right)$$

$$\sigma_{confusion}^{2} \text{ is the largest term of all >25\%}$$

G. Eigen, HASCO 19-07-16 Göttingen

SiW EM Calorimeter

SiW EM CalorimeterPerformance

- □ Measure e showers between 6 GeV and 45 GeV at CERN/Fermilab
- □ Observe excellent linearity
- Energy resolution is

$$\frac{\sigma_{\rm E}}{\rm E} = \left[\frac{16.7 \pm 0.1 \pm 0.4}{\sqrt{\rm E[GeV]}} \oplus 1.1 \pm 0.1 \pm 0.1\right]\%$$

Analog Hadron Calorimeter

- 38-layer Fe-scintillator sampling calorimeter (4.5 +)
- Layer: 2 cm steel absorber plates
 + 1/2 cm scintillator tiles
 - core tiles: 3×3 cm² (10×10 matrix) increasing towards outside
- Total of 7608 tiles, each is read out with wavelength-shifting (WLS) fiber + SiPM (216 tiles/layer)

SiPMs

□ The SiPM is a pixilated avalanche photodiode operated in Geiger mode

Performance of Analog Hadron Calorimeter

Particle Identification Detectors

Cherenkov Radiation

- Below the excitation energy a charged particle can radiate a photon \succ particle: mass m, velocity $\vec{v}=\beta c$, energy $E=\gamma mc^2$, momentum $\vec{p}=\gamma\beta mc$
 - > medium: refractive index n, dielectric constant $\varepsilon = \varepsilon_1 + i\varepsilon_2$, & $n^2 = \varepsilon_1$
 - photon: energy hω, momentum hk
- □ Energy-momentum conservation (p'=p-p_y) yields for $\overline{h}\omega \ll \gamma mc^2$:

$$\omega = \vec{v} \cdot \vec{k} = vk \cos \theta_{a}$$

Dispersion relation provides link between photon energy & momentum

 $\frac{2\pi\alpha}{L} \sin^2\theta$

$$\omega^2 = \frac{\mathbf{k}^2 \mathbf{c}^2}{\varepsilon}$$

Most photons are radiated

In the UV region

Combination of both equations yields Cherenkov condition

$$\sqrt{\varepsilon} \frac{v}{c} \cos \theta_{c} = 1 \quad \rightarrow \quad \beta \cdot \cos \theta_{c} = 1 / n$$

J The number of Cherenkov photons is wave length dependent

G. Eigen, $d\lambda$

Concept of <u>Ring Imaging Ch</u>erenkov Counters

- Cherenkov counters have been used in fixed target experiments in which particles are parallel to the optical axis of detector
- To use this technology in a collidingbeam experiment, a new approach was suggested
- □ A spherical mirror of radius R_M centered at IR focuses the Cherenkov cone produced in the radiator between the sphere radius R_D & the mirror into a ring-shaped image on the detector sphere R_D
- □ Usually R_D= 1/2R_M

Both SLD and Delphi used this approach

G. Eigen, HASCO 19-07-16 Göttingen

<u>Ring Imaging Ch</u>erenkov Counters

- □ Since focal length of mirror is $R_M/2$, Cherenkov cones of opening angle $\theta_c = \arccos[1/(\beta n)]$ emitted along the particle's path in the radiator are focused into a ring with radius r on the detector sphere
- □ For $R_D = R_M/2$, the opening angle θ_D of this ring equals θ_c in first approximation
- For this special geometry, the radius of ring image yields θ_c via

$$\tan \theta_c = \frac{2r}{R_{\mu}}$$

The uncertainty in momentum separation is

$$\frac{\Delta p}{p} = \frac{\Delta \gamma}{\gamma \beta^2} \text{ with } \frac{\Delta \gamma}{\gamma} = \gamma^2 \beta^3 n \sin \theta_c \Delta \theta$$

G. Eigen, HASCO 19-07-16 Göttingen

Particle Identification with DELPHI RICH

- Particle separation in DELPHI RICH
- Observation of a ring

Transition Radiation

- Transition radiation arises from rapidly changing refractive indices: foil-gas \rightarrow multiple layers to increase yield
- Formation zone inside foil $\zeta < I_1 \zeta = \frac{2c}{\omega} \left(\frac{1}{\gamma^2} + \frac{\omega_p^2}{\omega^2} + \theta^2 \right)^{-1}$ ω_p: plasma frequency (styrene~20eV) θ : polar angle of radiation ω: X-ray frequency Without absorption

Number of photons: $\frac{dN}{d\omega} \approx \frac{2\alpha}{\pi\omega} ln \left(\frac{\gamma \omega_p}{\omega} \right)$

- For a particle with γ =10³, radiated photons are in soft X-ray range 2-40 keV
- Due to absorption low X-ray range is removed

electron trajectory

<u>Transistion Radiation Detectors</u>

Pulse height spectrum in 1000 Li foils & Xe chamber

Pulse height spectrum from a Xe-filled proportional chamber of 1.04 thickness behind a Transition radiator (1000 Li foils of 51 μ m thickness) exposed to 1.4 GeV/c e⁻/ π beams G. Eigen, HASCO 19-07-16 Göttingen

ATLAS <u>Transition Radiation Tracker</u>

- The ATLAS TRT consists of 36 layers of straw tubes, 4 mm in diameter with position resolution of 200 μm interspersed with Xenon as radiator
- Separation between hadrons and electrons via transition radiation turns on when βγ>~1000

Endcaps

Performance of ATLAS TRT

Efficiency vs distance to straw center

High threshold probability vs p

Pion misidentification probability

