

Introduction

- In particle physics, we build so-called multi-purpose detectors
- These are dedicated instruments that measure particular observables: vertex, track positions, particle IDs, momentum, energy, time, …
- In colliding-beam experiments, subdetectors are placed in layers around the interaction region in cylindrical geometry, like onion shells
- In fixed-target experiments, they are stacked behind the target in a fixed fiducial volume
- \Box Though physics processes can be manifold and complex, we only encounter six particles in the final state: e $^{\pm}$, μ^{\pm} , π^{\pm} , K $^{\pm}$, p $^{\pm}$, γ
- In matter, these particles interact electromagnetically

Multipurpose Detectors at LHC

- \Box Each LHC experiment has about 100 million sensors
- \Box Think that your 6MP digital camera takes 40 million pictures/s

Outline

- \Box Ionization, excitation & electron in gases
- \Box Gaseous tracking detectors
- \square Momentum measurements
- \Box Solid state detectors
- \Box Electrons and Photons in Matter
- \Box Electromagnetic Calorimeters
- \Box Hadronic Calorimeters
- \Box Particle Flow Calorimeters
- \Box Particle identification detectors

Ionization, Excitation & Electrons in Gases

Energy Loss of Charged Particles

- Depending on the photon energy ho, different processes occur: 1) For h $\omega \cdot \mathsf{E}_{excitation}$ [optical region] \approx 2 eV \Rightarrow ϵ >1 (real) \rightarrow em shock wave
	- $\rightarrow \theta_c$ real for v > c/n
	- \rightarrow emission of real photon is possible if particle velocity is <u>larger</u> than phase velocity c/n of light (Cherenkov effect)
	- 2) For 2 eV \triangle h ω < 5 keV, ε is complex with ϵ_1 <1, ϵ_2 >0
		- \rightarrow production of virtual photons only
		- \rightarrow excitation and ionization of medium
	- 3) For $h\omega > 5$ keV absorption becomes small: ϵ_2 < 1, but ϵ_1 < 1
		- \rightarrow Threshold velocity for Cherenkov effect is larger than c
		- \rightarrow Radiation is emitted below this
			- threshold if medium has discontinuities \rightarrow transition radiation
		- G. Eigen, HASCO 19-07-16 Göttingen

Energy Loss in Different Materials

- The mean energy loss shows minimum at \sim same $\beta\gamma$ value (3-4) for all materials 10 \sim 1/ β ² Relativistic rise
- \mathbf{R} \Box Relativistic rise is higher in -6 $-dEdx$ (MeV $\rm g^{-1}cm^{2})$ $H₂$ liquid gases than in liquids and solids $\overline{\mathbf{5}}$ Δ Energy loss at minimumHe gas 3 2.5 H_2 gas: 4.10 $H₂$ liquid: 3.97 Fe $\overline{2}$ $2.35 - 0.28 \ln(Z)$ Sn 2.0 $A = dE/dx$ (MeV g^{-1} cm²) \circ $\overline{5}$ 0.1 1.0 100 1000 10000 10 $\beta \gamma = p/Mc$ + Solids **O** Gases 0.1 1.0 10 100 1000 Muon momentum (GeV/c) 1.0 التبت 0.1 100 1000 Pion momentum (GeV/c) Li Be B C NO Ne -H He Fe **Sn** 0.5 سىت 20 50 $\overline{2}$ 5 10 100 0.1 1.0 10 100 1000 10000 Z Proton momentum (GeV/c)

G. Eigen, HASCO 19-07-16 Göttingen \mathbb{R}^3 Minimum energy loss can be parameterized by: **2.35- 0.28 ln(Z)**

dE/dx for Particle Identification

Mobility of Ions

- \Box A charged particle traversing a gas produces $e^{-i\phi}$ pairs
- \Box A cloud of positive ions, i⁺, placed in an electric field of strength \overline{E} , is accelerated by the E field and decelerated by collisions \Rightarrow the motion can be described by a constant drift velocity \vec{v}_D
- According to measurements, v_D is proportional to E/P \rightarrow

 $\overrightarrow{ }$

where μ^+ is the ion mobility, units $[cm^2/(Vs)] P_0=760$ Torr \vec{v}_D^+ = μ^+ **E P 0 ^P pressure**

- \square Examples: He⁺ in He: μ ⁺= 10.2 cm²/(Vs) v_D⁺= 0.01 cm/ μ s Ar⁺ in Ar: 1.7 " 0.0017" CH_4 ⁺ in Ar: 1.87 $\hspace{1.6cm}$ 0.00187 $\hspace{0.6cm}$ 0.00187 $\hspace{0.6cm}$ $(CCH_3)CH_2^+$ in $(CCH_3)CH_2$ 0.26 " 0.00026 " **For E=1kV/cm**
- Mobility is high (low) for small (big) atoms/molecules
- Drift velocities of electrons are 1-10 cm/ μ s

Drift Velocity

The drift velocity can be expressed in terms of mean free path λ , thermal velocity $\mathbf u$, electric field $\mathbf E$, charge q and particle mass m

$$
\vec{v}_D = \frac{q\vec{E}}{m} \left\{ \frac{2}{3} \left\langle \frac{\lambda_e(u)}{u} \right\rangle + \frac{1}{3} \left\langle \frac{d\lambda_e(u)}{du} \right\rangle \right\}
$$

 \overrightarrow{D} For some gases v_D is independent of \overrightarrow{E} in some range (C₂H₄) or is only slightly dependent on \vec{E} (Ar) 14

 \Box Electron drift velocities of are \sim 1-10cm/ μ s and e-mean free paths are considerably larger: $\lambda_e = \lambda_{ion} \cdot 5.66$

Drift of Electrons in E & B Fields

- \Box A charge in an electromagnetic field moving through a gas-filled volume is subject to the force $m\dot{\vec{v}} = q(\vec{E} + \vec{v} \times \vec{B}) + m\vec{A}$ **Langevin**
- Stochastic acceleration averaged over time compensates translational acceleration where τ is average time between 2 collisions

$$
\left\langle \overrightarrow{A}(t)\right\rangle = -\frac{\overrightarrow{v_D}}{\tau}
$$

$$
\begin{array}{c}\n\bullet \\
\hline\n\end{array}
$$
 In a constant E field we have

 $Coulomb$

$$
\vec{v}_D = \frac{\mu}{1 + \omega^2 \tau^2} \left[\vec{E} + \frac{\vec{E} \times \vec{B}}{|\vec{B}|} \omega \tau + \frac{(\vec{E} \cdot \vec{B}) \cdot \vec{B}}{|\vec{B}|^2} \omega^2 \tau^2 \right]
$$

□ In the presence of
$$
\vec{E} \& \vec{B}
$$
 fields the drift velocity has 3 terms

\ni) one parallel to \vec{E}

\nii) one perpendicular to plane spanned by $\vec{E} \& \vec{B}$

\niii) one perpendicular to plane spanned by $\vec{E} \& \vec{B}$

\n∴ $\vec{w} = -\frac{q}{m}\vec{B}$

\n∴ $\vec{C} = -\frac{q}{m}\vec{B}$

\n∴ \vec{C}

Diffusion of Ions in a Field-free Gas

- \Box A charge distribution Q(t) localized at (0,0,0) at t=0 is diffused by multiple scattering
- \Box At time t, Q(t) is Gaussian with center at origin
- The rms spread is proportional to the diffusion coefficient: **D** = **¹ ³ ^u**λ**(**ε**)F(**ε**)d**^ε ∫

 $\textsf{with} \ \mathsf{Maxwell}\text{-}\textsf{Boltzmann}\ \textsf{distribution}\ \mathsf{F}(\varepsilon) = \textsf{c}\cdot \sqrt{\varepsilon\cdot \textsf{exp}(-\frac{\varepsilon}{\mathsf{kT}})}$

For energy-independent λ we obtain $D = \frac{1}{3} u \lambda$

$$
\Box \quad \text{For a classical ideal gas we have}
$$

G. Eigen, HASCO 19-07-16 Göttingen where $\sigma(\epsilon)$ is the collision cross section and N is number of molecules per unit volume **N** = **2.69** × **1019 ^P 760 273 kT molecule cm3**

 $\lambda(\varepsilon) = \frac{1}{\lambda(\varepsilon)}$

Nσ**(**ε**)**

adungsträgerdichte (a.u.)

Charge density distribution for 5 equidistant time intervalls:

x

e: kinetic energy

Diffusion of Electrons in E & B Fields

- Diffusion parallel (L) and perpendicular (T) to the drift direction depends on the nature of the gas
- r Typically faster gases yield smaller diffusion than slower gases
- The spatial resolution is depends on time and the diffusion coefficient

Figure 28.5: Electron longitudinal diffusion (σ_L) (dashed lines) and transverse diffusion (σ_T) (full lines) for 1 cm of drift. The dotted line shows σ_T for the P10 mixture at 4T [67].

G. Eigen, HASCO 19-07-16 Göttingen

 $(1 + \omega^2 \tau^2)$

 τ : time between 2 collisions

Gaseous Tracking Detectors

Proportional Counter

 \Box If we apply a high electric field between anode wire and cathode cage $(10^4 - 10^5 \text{ V/cm})$, electrons from the primary ionization gain enough energy between 2 collisions to cause further ionizations

- □ For certain E fields & gas pressures, **A** is independent of the amount of primary ionization \Rightarrow observed signal is proportional to primary ionization
- This domain of field strengths is called proportional region \Rightarrow here A $\approx 10^{4} - 10^{6}$
- \Box Achieve high field strengths with thin wires (20 μ m-100 μ m) as anode
- Amplification will start in close vicinity to anode

First Townsend Coefficient

 \Box For fast gases, Townsend coefficients are considerably smaller than those for slow gases

Gas Amplification

- \Box In addition to the secondary electrons, ionization processes due to UV photons contribute
- \Box These UV photons originate from de-excitations of atoms excited in collisions & produce e-via photoeffect in gas atoms or cathode
- \Rightarrow Assume that in avalanche formation N₀ \cdot A electrons are produced from N_0 primary electrons
- \Rightarrow From UV photons additional $N_0:A \gamma$ photoelectrons are formed ($\gamma \ll 1$)
- \Rightarrow By gas amplification these photoelectrons produce N₀ \cdot A² \cdot y electrons
- \Rightarrow From them another $N_0 \cdot A^2 \cdot \gamma^2$ photoelectrons are formed which in turn produce $N_0 \cdot A^{3} \cdot \gamma^2$ electrons, and so on
- \Box Summing up all terms we get the total gas amplification factor A_{y}

Multi-Wire Proportional Chamber

- \Box In a multi-wire proportional chamber (MWPC) a plane of anode wires is sandwiched between cathode planes
- \Box Cathode planes are segmented into strips; strips in one (other) plane run parallel (perpendicular) to the anode wires

- \Box A traversing charged particle liberates e- i⁺ pair along its path
- e- are accelerated towards the anode wire & i⁺ towards cathode plane
- \Box The E field is chosen sufficiently high so that secondary ionization sets in and an avalanche is formed near the anode wire and signals are induced on the cathode strips
- G. Eigen, HASCO 19-07-16 Göttingen \Box anode wires: 20 µm thick Au-plated W, Al; 2 mm spacing counting gas: Ar, Kr, or Xe with admixture of CO_2 , CH_4 , isobutane, ... amplification: 105; efficiency: ~100% with cathode readout measure x and y positions

Accuracies are \sim 0.4% of wire length

Drift Chamber

- We can obtain spatial information by measuring the drift time of electrons produced in ionization processes
- The drift time Δt between primary ionization t_0 & the time t_1 when eenters the high \vec{E} field generating an avalanche is correlated with the rising edge of the anode pulse 0.15
- \Rightarrow For constant drift velocity $\vec{\mathsf{v}}_{\mathsf{D}}(\mathsf{t})$ drift distance for this Δt interval is

 $\mathbf{z} = \mathbf{v}_D^- \left(\mathbf{t}_1 - \mathbf{t}_0 \right) = \mathbf{v}_D^- \Delta \mathbf{t}$

- \overrightarrow{C} Constant v_n results from constant E
- This is not achieved in MWPCs \Rightarrow Need to introduce a field wire at Need to introduce a field wire at $\frac{1}{8}$ original $\frac{1}{8}$ -0.05

Cylindrical Drift Chamber

- \Box \vec{E} field lines lie in the r- φ plane, perpendicular to axial \vec{B} field
- \Box The \vec{E} field is generated by a suitable arrangement of potential wires, which are parallel to each other surrounding a single signal wire
- \Box A large fraction of layers (typically \geq 50%) have wires running parallel to \vec{B} field (axial layers) & rest have wires running skew under stereo angle γ = \pm few ⁰ wrt \vec{B} field axis (stereo layer)
- Axial wires only give $r-\varphi$ position, stereo wires allow to get z position
- One determines $r-\varphi$ position from all axial wires, then the stereo wires are added by moving along z-position till the $r-\varphi$ fits with that of axial layers
- \Box For each signal wire t_0 and the time-to-distance relation need to be measured

Time Projection Chamber

- \Box The Time Projection Chamber combines principles of a drift chamber & proportional chambers to measure 3-dimensional space points
- \Box A high \vec{E} field is placed parallel to a high \vec{B} field (1.5 T)
	- \rightarrow no Lorentz force on drifting e-

Time Projection Chamber

- Electrons produced by ionization of a charged track traversing volume drift towards endcap
- Image is broadened by diffusion during drift process
- Broadening is considerably reduced by strong B field
- \Box e-are forced to perform helical movement around B field lines
- r Transverse diffusion coefficient is reduced by $1/(1+\omega^2\tau^2)$, with ω =(e/m)|B| & τ is mean free (drift time) time between 2 collisions
- Spatial resolution: 150-200 µm

Gas Electron Multiplier

- Position-sensitive gas detectors based on wire structure are limited by diffusion processes and space charge effects to accuracies of 50-100 µm
- \Box A GEM detector consist of a thin Cu-Kapton-Cu sandwich into which a high density of holes is chemically processed: $25-150 \mu m \ddot{\odot}$, 50-200 μm pitch
- \Box A high E field 50-70 kV/cm is applied across holes \Rightarrow electron produces avalanche in hole
- \Box Coupled with a drift electrode above and a readout electrode below it acts as a highly performing micro amplifying detector
- Amplification and detection are decoupled \Rightarrow operate readout at zero potential
- With several layers gain of $10⁴$ is achievable **Refulled by Seems** have higher rate capability than MWPCs

Micro-Mesh GAseous Structure

- The micro-mesh gaseous structure is a thin parallel-plate avalanche counter
- It has a drift region & a narrow amplification gap (25-150 μ m) between a thin micro mesh & the readout electrode (conductive strips or pads printed on insulator board)
- \Box Primary e- drift through mesh holes into amplification gap where they are amplified
- \Box Homogeneous E fields, 1 kV/cm in drift region & 50-70 kV/cm in amplification gap

- Excellent spatial resolution of 12 μ m, good time resolution and good energy resolution for 6 keV X-rays of 12% at FWHM
- New developments of MicroMEGAS with pixel readout will integrate amplification grid with the CMOS readout, use $1 \mu m$ Al grid above $50 \mu m \Rightarrow$ expect excellent spatial and time resolutions

Momentum Measurements

Deflections in Magnetic Fields

- **T** Particles with momenta p_x , p_y « p_z placed in a magnetic field $\vec{B}=(0,B_y,0)$ are deflected along a circular orbit with radius $\bar{R} = p/(e|\vec{B}|)$
- \Box If magnetic field is active on length L_{t} , the angular deflection is
- \Box This leads to a change in transverse momentum by in good approximation for small deflection angles Δ **p** $_{\mathsf{x}}$ = **p** \cdot **sin** θ ≈ $-\mathbf{eB}_{\mathsf{y}}$ **L** $_{\mathsf{t}}$ = $-\mathbf{e}\int\mathbf{B}_{\mathsf{y}}\,\mathsf{d}\mathsf{z}$
- \Box The error in position measurement $\sigma(x)$ leads to an error in the momentum measurement via

$$
\frac{\sigma_p}{p} = \frac{2p}{\Delta p_x} \frac{\sigma(x)}{h}
$$

where h is lever arm for angle measurement before & after magnet

e.g.: for $|B|=0.5$ Tm, $\sigma(x)=300$ µm & h=3cm

 $\rightarrow \sigma_{\rm p}/p \sim 1.3\%$ for p= 100 GeV/c, $\rightarrow \sigma_{\rm p}/p^2 \sim 1.3 \times 10^{-4}/GeV$

G. Eigen, HASCO 19-07-16 Göttingen

$$
\frac{S}{\sqrt{\frac{\theta/2}{\theta}}}
$$

projected (transverse) length

 $2 \sin \frac{\theta}{2} = \frac{L}{R}$ **t ^R** ⁼ [−] **eB y L t p**

Momentum Resolution

- \Box The momentum resolution typically has a contribution from the position measurement and one from multiple scattering
- \Box We focus on important case of solenoidal field \rightarrow Here we have cylindrical geometry (r, φ , z) where $B=(0, 0, B_z)$

3 2

G. Eigen, HASCO 19-07-16 Göttingen

instead of

720 $N+4$

- If position is measured at 3 equidistant points along the track L_t , the sagitta s of circular orbit is
- \square Since R=p/(0.3·B) \rightarrow $\theta \approx L_{\uparrow}/R \approx 0.3·B·L_{\uparrow}/p$, yielding $s = 0.3$

that is is determined by 3 measurements to precision

$$
\sigma_s = \sqrt{3/2\sigma_x}
$$
For N measurements we get statistical factor of

$$
\begin{array}{c}\n\uparrow \\
\uparrow \\
\uparrow\n\end{array}
$$

 Ψ_{plane}

 y_{plane}

$$
s = R - R \cos \frac{\theta}{2} \approx \frac{R\theta^2}{8}
$$

$$
= 0.3 \frac{\mathcal{B}L_f^2}{8p}
$$

Momentum Resolution

 \Box If $\sigma_{r\omega}$ is measurement error in (r- φ) plane, momentum component in that plane, p_t , is measured with errors:

 \Box Multiple scattering yields mean transverse p change

$$
\Delta p_+^{MS} = 21 \text{MeV} \left(\frac{L_+}{X_0}\right)^{1/2}
$$
 Transverse path length in Fe

This leads to an multiple scattering error of

$$
\left(\frac{\sigma_{p_+}}{p_+}\right)^{MS} = \frac{0.05}{BL_+} \sqrt{\frac{1.43L_+}{X_0}}
$$

Solid State Detectors

Properties of Silicon

- \Box Si has 4 valence e-
- \Rightarrow Each valence e- is coupled to e- of neighboring atom via covalent bound
- At T=0, all e- are bound & cannot conduct any current
- \Rightarrow full valence band, empty conduction band, separation: 1.1 eV
- At room temperature thermal energy is sufficient to liberate e^- into conduction band $(10^{11}/cm^3)$
- \Box However, usually we add controlled level of impurities
	- i) Elements with 3 valence $e^-(p$ -type) B, Ga, In \Rightarrow hole carriers, acceptor impurity ii) Elements with 5 valence $e^-(n$ -type)
		- Sb, P, $As \Rightarrow e^-$ carriers, donor impurity
- \Box Concentration of electrons (n) and holes (p) satisfies

$$
n \cdot p = N_c N_c \exp\left(\frac{E_g}{kT}\right) = const
$$

G. Eigen, HASCO 19-07-16 Göttingen

 N_c : # of allowed levels in conduction band
 E_c : energy gap N_v: # of allowed levels in valence band E_g: energy

empty hole

G. Eigen, HASCO 19-07-16 Göttingen When ionization liberates charge in depletion layer, e- & h+ drift apart due to strong internal field & produce a current

Si Microstrip Detectors

- \Box A typical n-type Si microstrip detector has
	- > p⁺n junction: $N_p \approx 10^{15}$ cm⁻³, $N_n \approx 1$ -5×10¹⁵cm⁻³
	- \triangleright N-type bulk: $p > 2$ k Ω cm, thickness 300 µm
	- \triangleright Operating voltage < 200 V
	- \triangleright n⁺ layer on the backplane to improve ohmic contact
	- \triangleright Aluminum metalization
- \Box About 30000 e-h⁺ pairs are liberated by a traversing charged particle via $dE/dx|_{ion}$
- \Box Charges drift towards electrodes where they produce a signal on that strip

 \Box Each strip is coupled to a preamplifier

Noise

- The main source of noise is due to statistical fluctuations in the number of carriers, leading to changes in conductivity
- The most important noise contributions are (Equivalent Noise Charge)
	- \triangleright leakage current (ENC_T)
	- \triangleright detector capacity (ENC_C)
	- \triangleright detector parallel resistor (ENC_{Rp})
	- \triangleright detector serial resistor (ENC_{Rs})
- The overall noise is the quadratic sum of all contributions

Alternate circuit diagram of a silicon detector.

 \Box The detector capacity is typically the dominant noise source

G. Eigen, HASCO 19-07-16 Göttingen For typical values of $f_T=1$ GHz and $\tau_f=100$ ns we estimate $ENC=1.13\times10^2~C_d^{1/2}$ [rms e-] with C_d in pF $\hat{\mathbb{F}}$ for \mathcal{C}_{d} =1pF \rightarrow ENC≈113 e⁻, for \mathcal{C}_{d} =100pF \rightarrow ENC≈1130 e⁻ $\frac{ENC_c^2}{c} \cong 8kTC_d$ **/** $f_\tau \tau_f$ time constant of filter kT=25.85 T/300K [meV] frequency for unity gain of amplifier Signal: 30,000e-

Position Resolution

- \Box The dE/dx energy loss produces a Landau-like distribution that is different for pions and protons of the same momentum
- For a single strip the position resolution is

 $\mathbf{b}_{x} = \frac{\mathbf{p}}{\sqrt{2}}$ 12 $\overline{\mathbf{C}}$

- For two or more strip hits we use the centerof-gravity method
- Here, a large signal-to-noise ratio improves
the spatial resolution

$$
\sigma_x \propto \frac{p}{S/N}
$$

 \Box Diffusion broadens the spatial resolution \Rightarrow broadening depends on the drift length

ATLAS Semi-Conductor Tracker

4 layers with 2 planes each, $r-\varphi$ strips and $r-\varphi$ strips slightly tilted by 40 mrad

SCT module Due to radiation issues ATLAS uses p-in-n Si

- In ϕ , modules are tilted wrt to surface of support structure by (11⁰, 11⁰, 11.25⁰ & 11.5⁰)
- $\Box \sim 61$ m² of Si (15392 Si wafers)
	- \sim 6.3 \times 10⁶ readout channels

G. Eigen, HASCO 19-07-16 Göttingen $\widehat{\mathbb{F}}$ Sensor thickness: 285 μ , 80 μ m pitch

ATLAS SCT Performance

Power of Microstrip Detectors

\Box The power of Si vertex detector measurements (ALEPH)

G. Eigen, HASCO 19-07-16 Göttingen

ER STRUCK

Pixel Detectors

- \Box Pixel detectors are made of an array of small Si pixels, i.e. physically isolated pads, providing both $r-\varphi$ & z measurements
- \Box Pixels are bump-bonded to a pixellated readout chip
- \Box Advantage: excellent 2-track resolution, take high occupancies
- They are used in colliding beam experiment e.g. WA97, DELPHI, ATLAS, CMS, …
- G. Eigen, HASCO 19-07-16 Göttingen \Box Typical pixel dimensions: WA97: $75\times500 \mu m^2 \Rightarrow 5\times10^5$ pixels DELPHI: $320 \times 320 \mu m^2 \Rightarrow 1.2 \times 10^6$ pixels ATLAS: $50\times300 \mu m^2 \Rightarrow 8\times10^7 \mu m$ CMS: $150\times150 \mu m^2 \Rightarrow 3.9\times10^7 \text{ pixels}$

ATLAS Pixel Detector Performance

 \Box Cosmic muon traversing through the pixel detector and SCT

3D Si Detectors

\Box 3D sensor concept

- \Box Advantage: low depletion voltage, small drift length
- \Box Need to be cooled to -30° C to achieve high efficiency after radiation

Electrons and Photons in Matter

Energy Loss of Electrons & Positrons

Electrons & positrons suffer energy losses by radiation in addition to the energy losses by collisions (ionization)

$$
\Box\ \mathsf{Thus}
$$

$$
\left(\frac{dE}{dx}\right)_{tot} = \left(\frac{dE}{dx}\right)_{rad} + \left(\frac{dE}{dx}\right)_{coll}
$$

- \Box The basic mechanism of energy loss via collisions is also valid for e^{\pm} , but Bethe-Bloch must be modified for 3 reasons:
	- i) their small mass \Rightarrow incident particle may be deflected
	- ii) For e- we have collisions between identical particles
		- \Rightarrow we must take into account indistinguishable particles
		- \Rightarrow Obtain some modifications, e.g. $T_{max} = T_e/2$

iii) et and et are fermions while heavy particle are typically bosons

Critical Energy and Radiation Length

Critical energy E_c is the energy where $(dE/dx)_{rad} = (dE/dx)_{coll}$ for each \Box material

The radiation length depends only on parameters of the material

$$
\frac{1}{X_0} \cong \frac{4\alpha r_e^2 \rho \frac{N_0}{A} \left\{ Z^2 \left[\ln(184.15 \cdot Z^{-\frac{1}{3}}) - f(Z) \right] + Z \ln(1194 \cdot Z^{-\frac{2}{3}}) \right\}}{N_0: Avogadro's \# 6.022 \times 10^{23} \text{ mole}^{-1}}
$$
Protons
G. Eigen, HASCO 19-07-16 Göttingen protons

Detection of Photons

- \Box A photon traversing a medium can experience different processes
	- i) Photoelectric absorption
	- ii) Rayleigh scattering
	- iii) Compton scattering
	- iv) Pair creation in nucleon/electron field
	- v) Photonuclear interaction
- \Box All processes reduce initial intensity

 $I(z) = I_0 \cdot exp(-\mu z)$

where μ is linear absorption coefficient Photon Energy that is related to photon absorption cross section σ by $\mu = \sigma N_0 \rho / A$

- \Box Photoelectric absorption decreases as ~1/E $_{\gamma}^{3.5}$ & increases as ${\sf Z}^{5}$ (e.g. for energies between K&L)
- Compton scattering decreases as $1/E_y$ & increases as Z

G. Eigen, HASCO 19-07-16 Göttingen **De Pair creation requires minimum energy of E≥2mec²**

Electron-Photon Showers

- At high energy a photon is likely to convert into ete-
- \Box e[±] particles loose energy via bremsstrahlung producing new γ 's that are likely to convert into ete-
- Result is a cascade or shower of $e^{\scriptscriptstyle +}$, $e^{\scriptscriptstyle -}$, $\&$ γ^{\prime} s
- \Box Process stops once energies of e^* , e-, & γ' s become so small that energy loss of γ' s occurs preferentially via photoelectric absorption & that energy loss of e+ & e- occurs preferentially via ionization
- A similar shower is obtained if
	- we start with a high-energy e^- or e^+
		- G. Eigen, HASCO 19-07-16 Göttingen

Model for Electron-Photon Showers

- **T** High energy photons & e- produce a shower of γ , e^+ & e^- via e^+e^- pair creation & bremsstrahlung
- **T** This process stops if energy of γ , e^+ & e^- approaches the critical energy
- A simplified model of an em shower looks like this:
	- \triangleright An initial photon of energy E_0 produces ete-pair with probability of 7/9 after passing a $1X_0$ thick layer of material \Rightarrow e⁺ & e⁻ each have average energy of $E_0/2$
	- \triangleright If $E_0/2 \triangleright E_c$, e⁺ & e⁻ loose energy via bremsstrahlung \Rightarrow Energy decreases to $E_0/(2f)$ after traversing second X_0 of material \Rightarrow Radiated photon has energy $E_y=E_0/2 - E_0/(2f)$ $[E_0/2>E_yE_0/(2f)]$
	- \triangleright So after 2X₀ average # of particles is 4: e⁺,e⁻, γ , γ \Rightarrow Each photon produces another ete-pair & each et & e-radiate another γ after passing through another X_0 thick layer
	- \triangleright After n generations corresponding to thickness n X_0 we obtain $N_{p}=2^{n_{max}}=E_{0}/E_{c}$ particles at shower maximum with average energies of $E_0/(2^{n_{max}})$, where $n_{max} = ln(E_0/E_c)/ln2$

Electromagnetic Calorimeters

Characteristics of e-y Shower

- The most exact calculations of detailed shower development is obtained with MC simulations (EGS)
- \Box We obtain the following properties of the e- γ shower
	- i) Number of particles at shower maximum, N_p , is proportional to E_0
	- ii) Total track length \boldsymbol{s} of \boldsymbol{e} & \boldsymbol{e}^* , is proportional to $\boldsymbol{\mathsf{E}}_0$
	- iii) Depth at which shower maximum occurs, X_{max} , increases as log

$$
\frac{X_{\max}}{X_{o}} = \ln\left(\frac{E_{o}}{E_{c}}\right) + t
$$

where $t=-0.5$ for e^{-} & $t=0.5$ for photons

- **T** Example: 1 GeV photon in NaI crystal: $X_0 = 2.59$ cm, $E_c = 12.5$ MeV \Rightarrow N_p=80, n=6.3, & X_{max}=11.8 cm
- G. Eigen, HASCO 19-07-16 Göttingen \Box Basically 2 types of em calorimeters 1) homogeneous shower counter (inorganic crystals [NaI, CsI(Tl), BGO, BaF2, PbWO4, LSO, LYSO], Pb glass, liquid noble gases [Ar, Kr, Xe]) 2) sampling shower calorimeter

Longitudinal & Transverse Distributions

- \Box Longitudinal energy distribution is parameterized by with $\beta=0.5$, $\alpha=\beta t_{max}$ and $\alpha=\beta^{\alpha+1}/\Gamma(\alpha+1)$ **dE dt** = **^E ⁰ Ct**^α **^e**−β**^t**
- Transverse shower dimensions results from MS of low-energy e+& e-
- **□ Useful unit for transverse shower is Molière radius** $\frac{R_{\sf w}}{R_{\sf w}}$ **= 21 MeV** X **_o / E_c**
- \Box Transverse energy distribution in units of R_M independent of material \rightarrow inside 1R_M 90% of shower is contained \rightarrow inside 3R_M, 99% of shower

nte Carlo (Cu)

10

Energy Resolution of Homogeneous Calorimeter

BABAR EMC Performance

- **T** Energy & angular resolution of BABAR CsI(Tl) crystal calorimeter
	- Ø Use photons & electrons from physics processes
	- \triangleright Low-energy point is obtained from radioactive source

SAMPLING SHOWER DETECTORS

- Sampling calorimeters are devices in which the fluctuations of energy degradation & energy measurement are separated in alternating layers of different substances
- \Box The choices for passive absorber are plates of Fe, Cu, W, Pb, U
- \Box For energy measurement a gas mixture, liquid noble gases, or plastic scintillators are used
- \Box This allows to build rather compact devices & permits optimization for specific experimental requirements $\Rightarrow e^-$ - π discrimination
	- \Rightarrow longitudinal shower profile
	- \Rightarrow good angular measurements
	- \Rightarrow good position measurements

- **T** Plate thickness p ranges from fraction of X_0 (EM) to few X_0 (hadronic)
- G. Eigen, HASCO 19-07-16 Göttingen Disadvantage is that only a fraction of total energy of em shower is detected (sampling) in active planes resulting in additional sampling fluctuations of the energy discrimination

Energy Resolution of Sampling Calorimeter

The total energy resolution of a sampling calorimeter is

- The sampling fluctuations include multiple scattering and effects of an energy cut-off
	- The path length fluctuations depend on the density of the medium

G. Eigen, HASCO 19-07-16 Göttingen

 N_{x} : number of crossings in sampling calorimeter=total track length divided by distance between active plates

$$
N_x = \frac{E_0 X_0}{E_c d} = \frac{E_0}{\Delta E}
$$

An Simulated EM Shower

T Simulation of em shower using EGS IV

ATLAS Liquid Argon ECAL

ATLAS LiAr ECAL

The ATLAS LiAr calorimeter works well

 $\frac{\sigma_{\varepsilon}}{\varepsilon} = \frac{0.1}{\sqrt{\varepsilon}}$ ⊕ **0**.**007**

Hadronic Calorimeters

Hadron Showers

- \Box Conceptually, energy measurement of hadronic showers is analogous to that of electromagnetic showers, but due to complexity & variety of hadronic processes, a detailed understanding is complicated
- \Box Though elementary processes are well understood, no simple analytical description of hadronic showers exist
- \Box Half the energy is used for multiple particle production ($\langle p_{t} \rangle \approx 0.35$ GeV), the remaining energy is carried off by fast, leading particles
- \Box 2 specific effects limit the energy resolution of hadronic showers
	- i) A considerable part of secondary particles are $\pi^{0'}$ s, which will propagate electromagnetically without further nuclear interactions Average fraction of hadronic energy converted into π^{0} 's is
		- \triangleright f_{ro} \approx 0.1 ln(E) [GeV] for few GeV \leq E \leq several 100 GeV
		- \triangleright Size of π^0 component is largely determined by production in first interaction & by event-by-event fluctuations about the average value

G. Eigen, HASCO 19-07-16 Göttingen ii) A sizable amount of available energy is converted into excitation or breakup of nuclei \rightarrow only a fraction of this energy will be see

Intrinsic Energy Resolution

The intrinsic hadronic energy resolution is:

holding for materials from Al to Pb (exception 238U)

- \Box The level of nuclear effects & level of invisible energy is sensitively measured by comparing the calorimeter response to e & h at the same available energy
	- \triangleright Ideally, one wants e/h \cong 1
	- \triangleright Typical values are e/h \cong 1.4
	- \triangleright e/h drops to ~0.7 below 1 GeV
- \Box Unless event-by-event fluctuations in the EM component are not corrected for, $\sigma_F/E \approx 0.45 E^{-1/2}$
- \Box This applies likewise to homogeneous & to sampling calorimeters

e/h ratio in different hadron calorimeters

Compensation Fluctuations

- \Box To cure these fluctuations we need to equalize response for e^- & h \Rightarrow either decrease e- response or boost h response
- The latter can be achieved in U-scintillator calorimeters
	- \triangleright Due to nuclear break-up one gets neutron-induced fission liberating about 10 GeV of fission energy
	- \triangleright Just need to detect 300-400 MeV to compensate for nuclear deficit measure either the few MeV γ component or the fission neutrons
- \square Intrinsic resolution for ²³⁸U is

$$
\left(\frac{\sigma_E}{E}(U)\right)_{\text{intrinsic}} \cong \frac{0.22}{\sqrt{E \text{ [GeV]}}}
$$

- This was achieved in the ZEUS calorimeter (U-scintillator)
- \Box In addition sampling fluctuations contribute to the total energy resolution where ΔE is energy loss per unit sampling for MIPs $\big($ \backslash $\overline{}$

G. Eigen, HASCO 19-07-16 Göttingen Hadronic sampling fluctuations are approximately twice as large as EM sampling fluctuations

Shower Containment

In analogy to X_0 define a hadronic interaction length λ as the length in which a hadron has interacted with probability of 63%

- \Rightarrow L_{0.95}(λ) describes data in few GeV \leq E \leq few 100 GeV within 10%
- 95% radial shower containment is $R_{0.95} \le 1\lambda$
- Useful parameterization of longitudinal shower development

$$
dE / ds = K \left[w \cdot t^a e^{-bt} + (1 - w) \cdot t^c e^{-dt} \right]
$$

G. Eigen, HASCO 19-07-16 Göttingen

& a,b,c,d: fit parameters t=s/ X_0 , l=s/ λ , f: fraction

ATLAS Hadron Calorimeters

- \Box Steel-scintillator sampling calorimeter (total thickness ~11 λ)
	- \geq 14 mm thick steel plates
	- \geq 460 000 3 mm thick scintillator tiles
	- \triangleright Calorimeter is built in 3 sections: barrel and 2 extended barrels

Characteristics of Hadron Showers

- \Box Energy response in a cell of the ATLAS tile calorimeter showing noise plus showers
- Mean energy response is uniform in η and ϕ
- \Box Mean energy deposit is determined by random triggers

Observed Energy Resolution

- □ Energy resolution of the ATLAS hadron calorimeter
- \Box Fe-scintillator tile calorimeter: covers barrel region
	- \triangleright Test beam measurements yield

$$
\text{Data:} \quad \left(\frac{\sigma_E}{E}\right) = \frac{52.1\%}{\sqrt{E}} \oplus 3.0\% \oplus \frac{1.8 \text{ GeV}}{E} \qquad \text{MC:} \quad \left(\frac{\sigma_E}{E}\right) = \frac{48.0\%}{\sqrt{E}} \oplus 3.3\% \oplus \frac{1.5 \text{ GeV}}{E}
$$

 \Box e/h ratio is larger than 1 and varies over energy range and the pion response shows some non-linearity (see Figure 5-2), of the order of 5%

Particle Flow Calorimeters

New Concepts: Particle Flow

- \Box At the international linear collider (ILC) an excellent jet-energy resolution is crucial to study new particles
- \Box Simulate $e^+e^- \rightarrow W^+W^-$ & $e^+e^- \rightarrow ZZ$ for LEP-like detector & LC design with factor of 2 improvement

LEP-like detector LC design goal

H.Videau

Particle Signatures

 \Box Different particles show characteristic signatures in the detector

 \Box Need appropriate segmentation in ECal & HCal to separate these

Jet Energy Resolution

- \Box Jet energy: $E_{jet} = E_{charged} + E_{photons} + E_{neut. had.}$ 65% 25% 10%
- \Box Implementing particle flow we have get jet energy resolution

$$
\sigma_{E_{jet}}^2 = \sigma_{E_{charged}}^2 + \sigma_{E_{photons}}^2 + \sigma_{E_{neutral}}^2 + \sigma_{confusion}^2
$$

With anticipated resolutions

$$
\sigma_{E_{\text{charged}}}^2 \approx (5 \times 10^{-5})^2 \sum \frac{E_{\text{charged}}^4}{\text{GeV}^2} \approx (0.02 \text{ GeV})^2 \frac{1}{10} \sum \left(\frac{E_{\text{charged}}}{10 \text{ GeV}}\right)^4
$$

$$
\sigma_{E_{\text{photons}}}^2 \approx (0.10)^2 \sum E_{\text{photon}} \cdot \text{GeV} \approx (0.52 \text{ GeV})^2 \sum \left(\frac{E_{\text{jet}}}{100 \text{ GeV}}\right)
$$

$$
\sigma_{E_{\text{neutral hadrons}}}^2 \approx (0.50)^2 \sum E_{\text{neutral hadrons}} \cdot \text{GeV} \approx (1.6 \text{ GeV})^2 \sum \left(\frac{E_{\text{jet}}}{100 \text{ GeV}}\right)
$$

 \Box Ignoring the (typically) negligible tracking term:

$$
\sigma_{E_{jet}}^2 \approx (0.17)^2 \left(E_{jet} \cdot GeV \right) + \sigma_{confusion}^2 \approx (0.3)^2 \left(E_{jet} \cdot GeV \right)
$$

\n
$$
\sigma_{confusion}^2
$$
 is the largest term of all >25%

SiW EM Calorimeter

SiW EM CalorimeterPerformance

- Measure e showers between 6 GeV and 45 GeV at CERN/Fermilab \Box
- Observe excellent linearity \Box
- Energy resolution is \Box

$$
\frac{\sigma_{\rm E}}{\rm E} = \left[\frac{16.7 \pm 0.1 \pm 0.4}{\sqrt{\rm E[GeV]}} \oplus 1.1 \pm 0.1 \pm 0.1 \right] \%
$$

Analog Hadron Calorimeter

- 38-layer Fe-scintillator sampling \Box calorimeter $(4.5 +)$
- \Box Layer: 2 cm steel absorber plates +1/2 cm scintillator tiles
	- > core tiles: 3×3 cm² (10×10 matrix) increasing towards outside
- Total of 7608 tiles, each is read \Box out with wavelength-shifting (WLS) fiber + SiPM (216 tiles/layer)

SiPMs

 \Box The SiPM is a pixilated avalanche photodiode operated in Geiger mode

Performance of Analog Hadron Calorimeter

Particle Identification Detectors

G. Eigen, HASCO 19-07-16 Göttingen

Cherenkov Radiation

- \Box Below the excitation energy a charged particle can radiate a photon ρ particle: mass m, velocity v=βc, energy E=γmc², momentum p=γβmc \triangleright medium: refractive index n, dielectric constant ε=ε₁+iε₂, & n²=ε₁
	- \triangleright photon: energy $\overline{h}\omega$, momentum $\overline{h}\overline{k}$
- \Box Energy-momentum conservation (p'=p-p_γ) yields for <mark>h</mark>ω « γmc²:

$$
\boldsymbol{\omega} = \vec{\mathbf{v}} \cdot \vec{\mathbf{k}} = \mathbf{vk} \cos \theta_{c}
$$

 θ_c

γ

 $p \longrightarrow p' \longrightarrow p'$

 \Box Dispersion relation provides link between photon energy & momentum

$$
\omega^2 = \frac{k^2 c^2}{\varepsilon}
$$

Most photons are radiated

In the UV region

 \Box Combination of both equations yields Cherenkov condition

$$
\sqrt{\varepsilon} \frac{\mathsf{v}}{\mathsf{c}} \cos \theta_{\mathsf{c}} = 1 \qquad \rightarrow \qquad \beta \cdot \cos \theta_{\mathsf{c}} = 1 / \mathsf{n}
$$

 \boldsymbol{L} sin² $\boldsymbol{\theta}_c^{}$

The number of Cherenkov photons is wave length dependent

G. Eigen, $\overline{d\lambda}$

dN

 $\frac{dN}{d\lambda} = \frac{2\pi\alpha}{\lambda^2}$

Concept of Ring Imaging Cherenkov Counters

- \Box Cherenkov counters have been used in fixed target experiments in which particles are parallel to the optical axis of detector
- \Box To use this technology in a collidingbeam experiment, a new approach was suggested
- \Box A spherical mirror of radius R_M centered at IR focuses the Cherenkov cone produced in the radiator between the sphere radius R_D & the mirror into a ring-shaped image on the detector sphere R_D
- \Box Usually R_D= 1/2R_M

Both SLD and Delphi used this approach

G. Eigen, HASCO 19-07-16 Göttingen

Ring Imaging Cherenkov Counters

- **T** Since focal length of mirror is $R_M/2$, Cherenkov cones of opening angle θ_c =arccos[1/(β n)] emitted along the particle's path in the radiator are focused into a ring with radius r on the detector sphere
- \Box For R_D=R_M/2, the opening angle θ_D of this ring equals θ_c in first approximation
- \Box For this special geometry, the radius of ring image yields θ_c via

$$
\tan \theta_c = \frac{2r}{R_{\mu}}
$$

The uncertainty in momentum separation is

$$
\frac{\Delta p}{p} = \frac{\Delta \gamma}{\gamma \beta^2} \quad \text{with} \quad \frac{\Delta \gamma}{\gamma} = \gamma^2 \beta^3 n \sin \theta_c \Delta \theta
$$

G. Eigen, HASCO 19-07-16 Göttingen

Particle Identification with DELPHI RICH

- **T** Particle separation in DELPHI RICH
- \Box Observation of a ring

Transition Radiation

 \Box Transition radiation arises from rapidly changing refractive indices: $foil-gas \rightarrow multiple$ layers to increase yield

−**1**

⎛ ⎞ $\omega_{\rm p}^2$ \Box Formation zone inside foil ζ <l₁ $\zeta = \frac{2c}{\omega}$ $\frac{1}{\gamma^2}$ + $\frac{p}{\omega^2} + \theta^2$ ⎜ and the same of ⎜ ⎟ ω ⎝ ⎠ w_p: plasma frequency (styrene~20eV) θ : polar angle of radiation Without absorption w: X-ray frequency $\sqrt{2}$ ⎞

ln

⎝ $\mathsf I$ I $\gamma \omega_{_{P}}$

ω

⎠ ⎟

T Number of photons: $\frac{\textit{dN}}{\textit{d}\omega}$ ∞ $\frac{\textit{2}\alpha}{\textit{\pi}\omega}$

- \Box For a particle with $\gamma=10^3$, radiated photons are in soft X-ray range 2-40 keV Number of photons: $\frac{d\omega}{d\omega} \frac{d\omega}{d\omega} \frac{d\omega}{d\omega} \approx \frac{1}{2}$

For a particle with $\gamma=10^3$,

radiated photons are in soft

X-ray range 2-40 keV

Due to absorption low X-ray range
- is removed

electron trajectory

Transistion Radiation Detectors

 \Box Pulse height spectrum in 1000 Li foils & Xe chamber

G. Eigen, HASCO 19-07-16 Göttingen **Pulse height spectrum from a Xe-filled proportional chamber of 1.04 thickness behind a Transition radiator (1000 Li foils of 51** µ**m thickness) exposed to 1.4 GeV/c e-/**^p **beams**

ATLAS Transition Radiation Tracker

- \Box The ATLAS TRT consists of 36 layers of straw tubes, 4 mm in diameter with position resolution of 200 µm interspersed with Xenon as radiator
- \Box Separation between hadrons and electrons via transition radiation turns on when β y>~1000

Endcaps

Performance of ATLAS TRT

Efficiency vs distance to straw center

\Box High threshold probability vs p

\Box Pion misidentification probability

