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The SM 

 Electroweak sector (including Higgs): 
 4 (independent) free parameters, for example:

 
EM

, G
F
, m

H
, m

W
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Parameters of the EW Sector
 The electroweak sector has more parameters

 Weak mixing angle 
W

 M
Z

 M
W

 
EM

 and G
F

 They are not independent, but related. For example (tree-level):

mW=mZ cosW mW=


2G F


1/2

1
sinW
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Parameters of the EW Sector
 Also m

t
: related to m

W
, via loops

 Physical W mass: 

 Quadratically dependent on m
t

 Logarithmically on m
H

 Set with smallest errors (besides free parameters: Higgs mass; 
mixings and fermion masses): 

 Z mass, 
EM

 and G
F
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EW fits
 Electroweak fits:

 Measure as many observables as possible
→ use the relations to probe consistency of the SM

 Or predict new parameters. E.g. top mass: predicted from EW fits way 
before its discovery
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M
t
 and m

H

 Constraints on m
H
: from EW fits

 Now: EW sector of the SM over-constrained
→ from predictions to consistency checks of the SM
 More in Roman's talk

Censored by Roman
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Content

 In this talk: concentrate on measurements and prospects of
 The weak mixing angle
 The W boson mass
 The top mass

 Some more top (just because it's top!)

 Conclusion

From LEP to LHC!
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The Z boson 
and 

The weak mixing angle
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Weak Mixing Angle
 Electroweak unification: U(1)

Y
xSU(2)

L

 Y: hypercharge; with Y=2(Q-I
3
)

 Fields: B for U(1)
Y
; W0,W1,W2 for SU(2)

L

 Linear combination of W1 and W2 yield W±

 To obtain photon and Z boson:

 
W
: weak mixing angle

→ coupling of the weak and electromagnetic interaction are 
related

 

 With g', g: coupling constant for U(1)
Y
 and SU(2)

L
 respectively

Z = cosW sinW

−sinW cosW
 B
W 0

tanW=
g '
g



20.10.2016 Yvonne Peters 10

Weak Mixing Angle and Couplings
 Z boson: couples to left and right handed fermions

 Couplings:

 Look for example at e+e- → Z → +- (e.g. at LEP):

 Possible spin states:

cL=I 3−Q sin2W

cR=−Q sin2W
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Weak Mixing Angle and 
Asymmetry

 Differential cross section as function 
of polar angle : depends on the 
contributions of the different 
matrix elements

 Extract asymmetry of cross section 
forward and backward in :

→ related to coupling strengths: e.g. for e+e- → Z → +- 

→ enables extraction of sin2
W

AFB
l =

 F− B

 F B

AFB=
3
4 [ c L

e 2−cR
e 2

c L
e 2cR

e 2 ][ cL
2−cR

2

cL
2cR

2 ]
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Effective Weak Mixing Angle
 A few “complications”: Theoretically

 The effective weak mixing angle

 Contributions from radiative corrections ()
→ absorbed in an effective coupling

 sin2
W
 can be extracted from sin2

eff 
using electroweak 

radiative-correction form factors
→ more in Roman's talk

 Extraction of sin2
W
:

sin2eff
f =1−M W

2

M Z
2 1

sin2eff
lept=ℜ[eM Z

2 ] sin2W

f: fermion
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Weak Mixing Angle at Hadron 
Colliders

 A few “complications”: Experimentally (@hadron colliders)

 Angle : usage of Collins-Soper frame

 Reduces impact of the unknown four-momentum of the incoming 
(anti)quark

 Boost along beam z axis to zero momentum vector of lepton pair, 
followed by boost along transverse component of lepton-pair momentum

 In pp: direction of quark?
 Use boost direction of the system: 

assumed to be the quark direction
● Dilution effects
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Weak Mixing Angle: LEP and SLD
 LEP: measurements at the Z pole

 Direction of incoming electron and positron: known
 Very precise measurements possible

 Also of other quantities! M
Z
, 

Z
, #neutrinos
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Weak Mixing Angle: LEP and SLD
 LEP: measurements at the Z pole

 Direction of incoming electron and 
positron: known

 Very precise measurements possible

 LEP: forward backward asymmetry

Phys.Rept.427:257-454,2006
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Weak Mixing Angle: LEP and SLD
 SLD: measure left-right asymmetry

 Usage of polarized beams!

Phys.Rept.427:257-454,2006
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Weak Mixing Angle: LEP and SLD
 LEP and SLD: very precise measurements!

 Not yet reached by LHC and Tevatron precisions

 Issue: A
FB

 measurements using 

b-jets and SLD left-right asymmetry: 
discrepancy by 3.2 S.D.s
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Measurements at the Tevatron
 Measurements by CDF and D0

 qq → Z/* → e+e- and +- 
 D0: only e+e-  so far

 Using full Tevatron data sample!

 Assume (anti)quark direction: 
(anti)proton direction
 Measure asymmetry 

using Collins-Soper frame

 As function of invariant m
ll
 mass

 At Z pole: 
asymmetry related to sin2

W
 

 Away from Z pole: asymmetry dominated by *-Z interference 
→ sensitive to PDFs
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Measurements at the Tevatron
 D0: measurement using central and forward electrons

 Extraction of sin2
eff 

 using templates

 CDF: correction of A
FB

 for detector effects 

 Measurements statistics-limited

Phys. Rev. Lett. 115, 041801 (2015) Phys.Rev. D93 (2016) 
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Tevatron Combination
 New combination: D0 and CDF result!

 Using BLUE method
 Main systematic uncertainty: PDFs
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Tevatron Combination
 New combination: D0 and CDF result!

 Using BLUE method

 Results consistent with 
LEP and SLD measurements
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LHC: ATLAS and CMS
 Further challenge compared to Tevatron: 

quark direction unknown!
 Use of 

boost direction of the system
 Dilution!
→ the higher the boost, the more 
clear the quark direction

 ATLAS and CMS: 
measurement of asymmetry for 
electrons and muons 
(electrons: only ATLAS so far) 
 Using 7 TeV data sample

JHEP09(2015)049

http://link.springer.com/article/10.1007/JHEP09%282015%29049
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LHC: ATLAS
 ATLAS: Largest uncertainties: PDF

JHEP09(2015)049

http://link.springer.com/article/10.1007/JHEP09%282015%29049
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LHC: ATLAS and CMS

 Results for sin2
eff
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LHC: LHCb
 New result: use LHCb!

 Forward direction: sensitivity of A
FB

 to  sin2
eff 

 greater for larger 

rapidities of Z boson!
 In LHCb acceptance region: assignment of forward and backward 

decays: correct 90% of the time!

 Use di-muon events; 7 and 8 TeV data sample

J. High Energy Phys.11 (2015) 

http://dx.doi.org/10.1007/JHEP11%282015%29190
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LHCb
 Most precise result from pp collider to date

 Largest uncertainty: statistics
 Largest systematics: from PDFs

 Result: (uncertainties: stat; syst; theory)

J. High Energy Phys.11 (2015) 

http://dx.doi.org/10.1007/JHEP11%282015%29190
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The Weak mixing angle
 All collider results today:

 Hard to reach LEP/SLD precision
 Main work to do: PDFs
→ profiling; 
usage of PDF dependent input

 
 All hadron-collider results consistent with each other and 

LEP+SLD average
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Weak Mixing Angle
 All existing results (including low energy results) versus scale: 

Taken from J. Erler (talk at 
PrecisionVietnam)
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The W boson mass
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The W Boson Mass
 Free parameter of the SM

 Connected to the vacuum expectation value of electroweak 
symmetry breaking!

 Physical W mass: includes loop contributions from top, Higgs, etc.
→ connected with top and Higgs boson mass!

→ W boson mass measurement: 
crucial to test consistency 
of the SM

→ high precision required!

 Global EW fit: predicts m
W
=8 MeV 

→ with current uncertainties on 
m

H
 and m

t
: 

require precision of m
W
 of ~6 MeV to significantly probe the SM! 

30
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W Boson Mass at LEP
 Measurement in e+e- → W+W- production

 Each W boson can decay:
 Leptonically: W → charged lepton+neutrino
 Hadronically: W → qq'

 3 different channels → reconstruction of W mass

31
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W Boson Mass at LEP
 Measurement from the position of the peak

 Width measurement from the 
same distribution 

32
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The W Boson Mass at Hadron 
Colliders

 Hadron colliders: use pp → WX (or pp → WX)
 X: hadronic system 
 Use signature with a charged lepton and neutrino

 Problem: initial momenta of colliding 
partons unknown
 → we can only get the transverse 
component of the neutrino 
from the missing transverse energy 
(MET)

 Trick: use the “transverse mass” 
for the measurement

mT
2=2 pT

l MET 1−cos
33
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W Mass at Tevatron
 CDF and D0: measurement of W 

boson mass using p
T
l, MET and m

T

 PDFs and lepton energy 
calibration: limiting factors

Systematics D0:

Systematics CDF:

Phys. Rev. D 88, 052018 (2013)

34
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W Mass at Tevatron
 CDF and D0: Combination via BLUE

 CDF: electron and muon channel; 2.2 fb-1

 D0: electron channel; 4.3fb-1

 Still more data from Tevatron 
to analyse
 Ongoing

 Limiting factor: understanding 
of PDFs and lepton energy scale
 D0: electron energy scale 

using Z events 
→ analysing full Tevatron data 
sample will improve this!

35
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W Mass at LHC
 Main issues at LHC:

 Energy calibration with pile-up!
 PDFs: large contribution of sea quark PDFs in pp collisions

 W+, W- : different physics modeling; physics modeling (e.g. p
T
W)

 ATLAS and CMS: measurements ongoing
 CMS: Z mass measurement in 

“W like” Z → 
→ proof of principle

 Expect larger uncertainties for 
W mass measurement: 
background, PDFs in W production

CMS PAS SMP-14-007

36
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W Mass at LHC
 Various measurements will help improve precision

 PDF-related measurements
 W and Z cross section, W/Z ratio,  W+/W-, Z-rapidity, W+charm 

 Improvement of physics modeling

 Measurements of Z polarisation coefficients, Zp
T
 

 Snowmass report 2013: projected 
uncertainties for W mass measurement 
at LHC (ATLAS and CMS):

arxiv:1310.6708

37
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W Mass at LHC
 Various measurements will help improve precision

 PDF-related measurements
 W and Z cross section, W/Z ratio,  W+/W-, Z-rapidity, W+charm 

 Improvement of physics modeling

 Measurements of Z polarisation coefficients, Zp
T
 

 Proposal of W mass measurement at LHCb
 Large rapidity region → PDF uncertainties anti-correlated with those 

in ATLAS and CMS measurement
 Expect improvement of 30% when including LHCb

 A lot of work on theory, calibrations and PDFs required to reach 
goal of very precise W mass measurement!

 Eur.Phys.J. C75 (2015) 

38
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The Top mass
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The Top Quark

 Heaviest known elementary particle: 
                              m

t
=~173GeV

 Standard Model:
 Single or pair production
 Electric charge +2/3 e
 Short lifetime 0.5x10-24s

 Bare quark - no hadronization
 ~100% decay into Wb
 Large coupling to SM Higgs boson

→ A lot can be learned in the top sector!

40
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The Top Mass
 Top mass: free parameter of the SM

 important ingredient to EW fits!
→ consistency of the SM

 Fate of the universe!

→ aim at high precision top mass measurements!
41
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The Top Mass
 Measurements: at Tevatron and LHC

 Measurement done with several methods:
Template method, ideogram, matrix element, etc.
 Allowing reach of precision not imagined before: well below 1 GeV!

 Measurements done in (almost) all final states of tt

42
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Top Quark Mass: 
Template Method

 Construct mass dependent template

 Compare MC for different top masses to data → “done”

 Main systematic uncertainty: Jet Energy Scale
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Top Quark Mass: 
Template Method

 Construct mass dependent template

 Compare MC for different top masses to data → “done”

 Main systematic uncertainty: Jet Energy Scale

 In-situ calibration

Constrain invariant 
mass of jets from W 
to known W mass
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Top Quark Mass: 
Template Method

 Construct mass dependent template

 Compare MC for different top masses to data → “done”

 Main systematic uncertainty: Jet Energy Scale

 In-situ calibration

Constrain invariant 
mass of jets from W 
to known W mass
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Top Quark Mass: 
Matrix Element Method

 Use full event kinematics → most precise method

 For each event calculate probability to belong to certain top mass

P sig x ;mtop=
1

obs
∫∑ flavors

dq1dq2 dy f q1 f q2  y ; mtopW  x , y 

PDFs Matrix element 
& phase space

Transfer function: 
mapping of true 
momenta y to 
measured momenta x
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Matrix Element Method: Extraction

 In the same way as signal probabilities, calculate background 
probabilities P

bkg
(x)

 Per-event probability: 

 f
sig

: fraction of signal events in data sample

 Perform event-by-event likelihood: 

P evt  x ,mtop= f sig Psig x ,m top1− f sigPbkg  x

−ln L mtop=−ln∏i

n
Pevt  x ,mtop
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Top Mass: Status
 Many new results: → incredible precision! (CMS: 0.48 GeV)

 Limiting factors: 
 modeling
 JES

48
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Top Mass: Status
 Many new results: → incredible precision! (CMS: 0.48 GeV)

 Limiting factors: 
 modeling
 JES

49
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Top Quark Mass and Issues
 Constantly discussed: what is it, that we measure?

 All direct mass measurements rely on MC for calibration
 No clean definition of the top mass

 e. g. contributions like this missing in MC:

 Task mainly for theorists 
→ first ideas emerging (for example “calibration”)

 Experimentally: explore alternative methods
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Top Quark Mass: Be aware

 Alternative method: Extract m
t
 from cross section measurement

 Assuming pole or MS mass

 Unambiguous extraction 
of top quark mass!

 Contra: uncertainty quite 
large compared to 
direct methods

Eur.Phys.J. C74 (2014) 3109

51

http://link.springer.com/article/10.1140/epjc/s10052-014-3109-7
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Mass from tt+jets
 Extract mass from distribution in tt+jets events

 Gluon radiation depends on mass of quark
 Compare unfolded distribution to calculation → allows to uniquely 

define mass scheme

mt
pole=173.7±1.5 stat±1.4  syst−0.5

1.0 theoGeV
JHEP 10 (2015) 121

http://link.springer.com/article/10.1007/JHEP10%282015%29121
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Top Mass: other methods and 
input

 Since systematics main limiting factor:
 Do alternative methods
 Reduce systematics with 

supporting measurements

 Alternative methods: for example 
track-based observables 
→ minimises jet-related uncertainties

 Supporting measurements: 
important are differential 
cross section measurements
 Get a handle of 

modeling systematics

TOPQ-2016-04
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Top Mass
 Important topic also for future

 Emphasize on supporting measurements and alternative methods

 Hot Topic: differential measurements: parton versus particle level

MC generator dependencies Stable particles 
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More Top Fun
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EW

QCD

Top Studies
 Top sector: source to test QCD and EW couplings!

 
 Single top: large data samples allow more detailed studies

 Top mass in single top
 Differential distributions in single top

EW

56
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Top Studies: Overview

Branching ratios
|V

tb
|

Anomalous coupling
New/Rare decays

W helicity

Production cross section
Production kinematics
Production via resonance
New particles

Top mass
Top mass difference
Top charge
Lifetime
Top width

Spin correlation
Charge asymmetry
Color Flow

s-, t- and Wt-channel 
production, properties and 
searches in single top 
events
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Top!

JHEP01 (2016) 096

Huge tt samples becoming 
available → precision era

Single top: from observation to 
measurements

ttV and ttW becoming accessible: 
direct probe of top-V coupling
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Summary
 Electroweak precision measurements: crucial to scrutinize the SM

 Where is the new physics? → precision required!
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Summary
 Electroweak precision measurements: crucial to scrutinize the SM

 Where is the new physics? → precision required!

 Electroweak fits: 
relate different parameter 
in EW sector 
→ consistency checks might 
reveal hints for BSM!

W, top and 
Higgs

Some new 
particle
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The Tevatron

Centre of mass energy: 1.96TeV

 Tevatron at Fermilab

 Near Chicago

 Proton Antiproton Collisions

 Run I: 1992-1996
 Collision energy: 1.8 TeV

 Run II: March 2001 to 
30.09.2011 (2pm)

 Collision energy: 1.96 TeV

 Two experiments: CDF & D0

Main Injector
 & Recycler

Tevatron

Booster

p 
p 

  p source

Chicago

_

_

DØ
CDF

62
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The CDF & DØ Detectors

Muon chamber: 
Identification and momentum 
measurement of muons

Calorimeter: 
Identification and energy 
measurement of jets and 
electrons; 
tau identification

Tracker: Detection and 
momentum measurement for 
charged particles

63
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The LHC
 LHC: 8 TeV Proton-Proton collisions (2011: 7 TeV)

 Start: 2009
 Restart: 2015 with 13 TeV

 Later: 14 TeV

 Some LHC key data: 
 27km ring
 ~100m underneath surface
 1232 dipole magnets to keep 

protons in their orbit 
 Further magnets for focussing

 Magnets get cooled to 1.9 Kelvin (-271.25 Celsius)
 → the LHC: coolest ring in the universe!

64
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CMS & ATLAS Detectors

65
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Combination Tool: BLUE Method
 For all combinations: use of BLUE method

 BLUE Method (Best Linear Unbiased Estimator):

 Use weighted mean of all measurements y
i
:

 The weights are set to minimize uncertainty: 

                                   

with V: covariance matrix (of all                                                      
  uncertainties: statistical and all systematics)

 Error squared on the weighted mean:

 For high correlations: some weights can get negative

=∑i
wi yi

wi=
∑ j

V ij
−1

∑k∑l
V kl

−1

Var  =wT V w
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