
The Software Review — 
what did we learn so far?

Graeme Stewart & Walter Lampl

2016-06-07
1



Reminder: Proposal
• Arising from discussions in the Software Quality session at S&C week 1 year 

ago 
• We agreed to undertake a high level review of subsystem algorithmic code 

• This should concentrate on the design, not on the specifics of lines of code 
• Why do it now? 

• We know that Run 3 is some time away 
• However, the scale of the challenge to get our code ready for multi-

threading is very large (3M lines C++, 1M lines python, 2300 packages) 
• LS1 software updates were planned and prepared too late 

• So this time we want to be ready well in advance 
• See Walter’s slide from yesterday, re. Run 2 and AthenaMT release planning

2



Inputs
• People! 

• This is a community review, so we are the experts 
• A few people from each area charged with helping review other areas and 

providing input for their domain 
• Documentation 

• A higher level description of the code design 
• Pointers to documentation, if it exists 

• A workflow, showing how algorithms and tools interact with the data 
(multiple slides) 

• Which (parts) of the code should be rewritten 
• Comments/information on framework issues 
• Comments/information on how the code is tested and validated

3



Framework Issues
• Incidents 

• Reviewing the use of these, view to not using them 
• Thread hostile issues 

• Hidden caches, which circumvent StoreGate (hidden dependency, plus serialisation) 
• Global variables (if non-const) 
• const_cast 

• Public Tools 
• Should be migrated to private tools or services 

• Non-Thread safe resource access 
• Python in the event loop 
• Can algorithms become const 
• Internal parallelisation opportunities

4



How did it go…?
• Long term goals with soft deadline are very vulnerable to delays 

• It took until February to get started (initial proposal had been September 2015 
• Mainly because of 20.7 release for 2016 data taking 

• Engagement of communities was pretty much proportional to their software efforts 
and commitment 

• Stronger areas found it easier to contribute reviews and prepare material 
(simulation, tracking) 

• One key person made all the difference in a number of areas (SCT, egamma, 
tau) 

• Some communities really struggled and also had to confess that no one 
actually knows the software very well now (TRT) 

• This is positive because it’s uncovering areas of weakness and addressing them 
during the review material preparation

5



• Walter and I have to admit to being tardy with the 
conclusions on occasion too

6



The Review Material
• Generally impressive material has been shown 

• Timely preparation of material is critical 
• Google docs format has proved to be absolutely 

ideal for having a dialogue in advance 

• Sometimes misses key points (especially on multi-
threading questions) 

• Sometimes too long (Muons presented a staggering 99 
slides!) 
• Clearly good if this becomes some internal 

documentation, but hard to fit into the allotted time

7



The Reviewers
• Impressive! 

• Reviews have contributed a great deal 

• Hard work done to look at the review material in 
advance 

• Perspicacious comments on the structure of the code 
• Even some really detailed digging into code itself, 

which we did not think was feasible 
• Especially some good comments on threading 

issues and some key design problems therein 

8



Observations I
• Code debt is quite high 

• Code has been adapted and extended and lost original design clarity 
• There is considerable code duplication in some areas 

• Cut and paste seems to have been a common design pattern 
• Looking for this with a tool makes sense 

• Shows the importance of really good strong examples 
• ‘Opportunities for parallelism’ seemed to be taken too much to heart 

• A few discussions about parallelising things whose total CPU 
consumption is actually quite small 

• Restructuring ‘super algorithms’ to break them apart where possible is 
a much better strategy for most pieces of reconstruction code

9



Observations II
• No real show stoppers observed re. data flow 

• A lot of data held in tools is not even a problem if used within the same algorithm 
• Private tools! 

• However, better to move to StoreGate and be explicit 
• 100% needed when public tools are used to cache data between algorithms 

• const_cast is definitely an issue 
• Some of this solved at core level 

• Ownership of objects can be confusing and unclear 
• Let’s get the basic items done first and build on that 

1. Non-thread hostile code 

2. Algorithms and tools that are clonable 

3. Re-entrant algorithms and tools

10

In case of substantial 
re-coding, go for this 

option — need a good 
model!



Looking Forward
• Finish the reviews by the summer 
• Start planning how we make the code MT ready in detail 
• Generally start work on this from Autumn 
• A lot of coding, testing and hard work to come 

• Good examples will be critical — we already saw a lot of 
inappropriate copy and paste 

• The review is only the start 
• But it’s a good start!

11


