

Track reconstruction at LHC

- Very similar concepts deployed for ATLAS/CMS
 - ATLAS/CMS in HL-LHC & FCC(-hh) experiments will be similar detector concepts
 - focus on cylindrical hadron-hadron detectors in this talk
- Track reconstruction strategies, algorithms, parameterisations
 - track seeding
 - combinatorial track finding
 - track classification

A simplified view of ATLAS

- ▶ A simplified "Tracker" view of ATLAS
 - two precision tracking systems having very different magnetic field setups very different detecting technologies very different dimensions
 - some lump of material in between

Current structure - ATLAS repository

A ... embedded in Gaudi/Athena structure with AlgTools/Algorithms/Services

Extending the ATLAS Tracking SW structure

- Within Phase-2 upgrade we developed a fast detector prototyping
 - extended ATLAS tracking EDM/geometry with generic XML based builders
 - could easily run fast track simulation and refitting without actually building ATLAS (2014/15 in parallel a test study within FCC software context & DD4Hep binding)

ISF_Fatras		
EDM	Geometry	Tools
(ISF_FatrasEvent)	(ISF_FatrasDetDescrTools)	(ISF_FatrasRecoTools)

Decoupling the ATLAS Tracking SW?

ACTS - Why?

- LHC detector software has really been stress-tested
 - and I think we learned a lot, and we start working on Upgrade/FCC
 - however, our concepts are sometime > 30 years old!

APPLICATION OF KALMAN FILTERING TO TRACK AND VERTEX FITTING

R. FRÜHWIRTH

Institut für Hochenergiephysik der Österreichischen Akademie der Wissenschaften, Vienna, Austria

Received 30 June 1987

More importantly even

Algorithmic Code Evolution

- Highest investment in algorithmic code O(100M\$) for LHC experiments
 - Vast majority of offline packages

Software lessons from Run-1 - EDM (1)

▶ The reconstruction event data stays 99% internal

plan: available for analysis

- this was not what we planned for:

this led to an evolution of the ATLAS EDM

Software lessons from Run-1 - EDM (2)

Introduction of xAOD which is fully ROOT-readable

EDM - consequences

- When designing the Tracking EDM (2003-2005) we were very worried about the 99% non-experts using it, tried to make it
 - as little conventions as possible
 - fully fail & type safe
 - very user friendly
 - complicated inheritance structure
- Did not care about concurrency at that stage
- Obviously, this ended up not in the optimal design
 - lazy initialisation
 - no real thoughts about data locality

Lesson: if we plan for 1% experts only, we can be more aggressive in concepts & design

ACTS - a tracking R&D Testbed

ACTS - some basics

- Minimal dependency to externals
 - ACTS core depends on Eigen*, boost
- Plugin mechanism
 - Geometry is defined by the client (e.g. GeoModel, DD4Hep, TGeo, Geant4 can exist as geometry backend)
- ▶ C++14 standard
- Workflow totally in GitLab at CERN
 - we did experience the problem of account rights
 - continuous integration using Jenkins

 we could potentially also make an ROOT SMatrix version at some point (had this discussion of real benchmarking at CHEP last year)

ACTS - Geometry Plugin mechanism

Readout geometry

Physical Volume

Transform

Full Physical Volume

Alignable Transform

Cached Position

Delta Transform

 Each Detector Element has a pointer to Full Physical Volume

Elements

Office of Science

ACTS - Geometry Plugin mechanism

- Example for ROOT TGeo plugin
 - ACTS need detector elements (only sensitive ones) for geometry building
 - needs to extend a DetectorElementBase class and provide an Acts::Surface view

```
class TGeoDetectorElement : public DetectorElementBase
public:
 /** Constructor */
 TGeoDetectorElement(const Identifier&
                                                               identifier,
                      TGeoNode*
                                                               tGeoDetElement,
                      std::shared_ptr<const Acts::Transform3D> motherTransform
                      = nullptr);
 /** Identifier */
 virtual Identifier identify() const override;
 /**Return local to global transform associated with this identifier*/
 virtual const Transform3D&
  transform(const Identifier& identifier = Identifier()) const override;
 /**Return surface associated with this identifier, which should come from the */
 virtual const Surface&
 surface(const Identifier& identifier = Identifier()) const override;
```

Tools - Extrapolation

```
/** charged extrapolation - public interface */
                                                            cache that stays within the thread
   ExtrapolationCode extrapolate(ExCellCharged& ecCharged,
                                 const Surface* sf = nullptr,
                                 const BoundaryCheck& bcheck = true) const final;
  /** neutral extrapolation - public interface */
   ExtrapolationCode extrapolate(ExCellNeutral& ecNeutral,
                                 const Surface* sf = nullptr,
                                 const BoundaryCheck& bcheck = true) const final;
  /** define for which GeometrySignature this extrapolator is valid - this is GLOBAL */
   GeometryType geometryType() const final;
private:
  /** main loop extrapolation method */
   template <class T> ExtrapolationCode extrapolateT(ExtrapolationCell<T>& eCell,
                                                     const Surface* sf = nullptr,
                                                     PropDirection dir=alongMomentum,
                                                     const BoundaryCheck& bcheck = true) const;
```

Magnetic field cache - Excellcharged& eccharged,

- Example: magnetic field access
 - numerical (Runge-Kutta) field integration is one of the big CPU consumers
 - ATLAS adaptive Runge-Kutta propagator has been highly optimised dedicated version was back-ported into Geant4
 - field access was not yet optimised deep caller chain field data needed conversion was written in FORTRAN90
 - new field service implemented simplified caller chain use native units

use cell caching to store value of field -> minimised cache misses

speed-up of 20% in simulation, few % in reconstruction

ATS release planning - alpha

⊕ 0.1.0

alpha release: first repository build Athena/Gaudi

Release date: 19/Feb/16
14 Issues · Release Notes

14 of 14 issues have been resolved

WebEventDisplay by Edward Moyse

ACTS - Workflow

 Begin with the selected commit Q Merge branch 'ACTS-88_TrackingVolume_Material' into 'master' fixed compilation errors add test executable for building the geometry 🌃 made Material member of TrackingVolume Merge branch 'ACTS-83_LayerArray' into 'master' cleaned up geometry from pointers to vectors 🕎 updated creation of smart pointers changed surface array return type to unique_ptr Changed LayerArray return type to unique_ptr Changed Pointers to LayerVectors to LayerVectors Merge branch 'ACTS-82_CylinderVolumeBuilder_Config' into 'master' fixes ACTS-82 Merge branch 'ACTS-91_corrections' into 'master'

their JIRA tickets and let gitlab talk to Jenkins & JIRA (see talk by Christian)

usually name

branches with

Framework de-coupling

```
class MaterialEffectsEngine : virtual public IMaterialEffectsEngine
{
public:
  /** @struct Config
      Configuration struct for the MaterialEffectsEngine
    */
  struct Config
    std::shared_ptr<Logger> logger;
    bool eLossCorrection; //!< apply the energy loss correction
    bool eLossMpv; //!< apply the energy loss correction as most probable value
    bool mscCorrection; //!< apply the multiple (coulomb) scattering correction
    std::string prefix; //!< screen output prefix
    std::string postfix; //!< screen output postfix
    std::string name; //!< the name of this engine
    Config()
      : logger(getDefaultLogger("MaterialEffectsEngine", Logging::INFO))
      , eLossCorrection(true)
      , eLossMpv(true)
      , mscCorrection(true)
      , prefix("[ME] - ")
      , postfix(" - ")
      , name("Anonymous")
  };
  /** Constructor */
  MaterialEffectsEngine(const Config& meConfig);
private:
    Config m_cfg; //!< configuration object
```

Framework re-coupling

```
typedef <class T> class GaudiMaterialEffectsEngine : public GaudiServiceWrapper<T>, virtual public IMaterialEffectsSvc {
    // the private ACTS material effects engine
    private:
        std::unique_ptr<T> m_meuEngine;
};

// create the configuration object
Acts::T::Config meuConfig;
// use the declareProperty interface
declareProperty("ApplyEnergyloss", meuConfig.eLossCorrection);

// now create the internal ACTS engine
m_meuEngine = std::make_unique<T>(meuConfig);
```

- For the Athena(Gaudi) usage wrappers in the ATLAS(FCC) repository
 - implements defined ATLAS/FCC interfaces
 - uses declareProperty for configuration
 - can work with genConf and keep ATLAS/FCC python jobOptions as is

ACTS - Extensions (1)

- We have a mini test framework for debugging/testing
 - mimics Gaudi (not GaudiHive) behaviour

ACTS - Extensions (2)

- ATLAS fast track simulation modules been put into a separate repository
 - make ACTS usable for Tracking R&D, e.g. Machine Learning challenge

