
Your ROOT for Your
Run3
Axel Naumann

ATLAS Software-TIM, Glasgow, 2016-06-06

Your Custom Order

• ROOT in a multi-threaded framework

• ROOT’s new interfaces

2

ROOT in MT
framework

?

• Distinguish multi-threaded operations in ROOT

• But here, topic is “you have a MT framework and
use ROOT”

• but there is some interaction, so:

4

Existing MT Features
• MT usage in ROOT, shows areas of thread-safety

• spawning TBB tasks, “implicit multi-threading"

• E.g. TTree::GetEntry() reads branches in parallel

• no external task granularity: Gaudi cannot read
“first branches first”

• More to come: math,…

5

Current Situation
• Some code paths are tested to be MT safe

• CMS / Philippe implemented much of this.
Thank you, CMS!

• MT safety almost completely due to selective
locking plus a few atomics plus thread locals

• thread != task

6

MT Parts / Paths {

Thread-Safe I/O

• One thread, one TFile

• reading

• and even writing

• “Proven” though CMSSW in production since years

8

Thread-Safe Histogramming

• NOT filling the same histogram from multiple
threads!

• BUT one histogram per thread

• plus ROOT::TThreadedObject

9

Thread-Safe Fitting

• CMSSW verified thread safety:

• fit different histograms in different threads

• Started making it part of “implicit threading”

10

threads
1 2 3 4 5 6 7 8

sp
ee

du
p

0

0.5

1

1.5

2

2.5

3

3.5

4

Hyperthreading

CMS Tree
ATLAS Tree

|| Branch Reads

• Part of “implicit threading”

• read-a-branch == TBB task

• Reading 200 top-level ATLAS branches in 4
threads

11

}

Retrofitting Thread-Safety

• Provide thread safety for required code paths

• Change implementations to be thread-safe

• no more gDirectory, gPad, caches

• get rid of global “list of cleanups” (memory
management) - impossible :-(

13

Challenges of Retrofitting

• Pragmatic but intensive

• requires a myriad of small-scale changes

• Sometimes not enabling parallelism but
safeguarding (against) it

• Takes effort, usually requires interface changes,
limited reach, trying since years…

14

audiencestack.com

http://audiencestack.com

New! Interfaces!

16

canv->Draw(hist);
file->Write(“hpx”, hist);

New! Interfaces!

17

canv->Draw(hist);
file->Write(“hpx”, hist);

// ROOT v6:
hist->Draw();
hist->SetName(“hpx”);
hist->Write();

ROOT’s New Interfaces

• See https://indico.cern.ch/event/395887/
contributions/947390/ from ATLAS Software
Technical Meeting, Sept 2015, LBNL

• Short recap:

18

https://indico.cern.ch/event/395887/contributions/947390/

Motivation
• Robustness: type safety, modern ownership

management, no pointers, no string options but
identifiers

• Simplicity: standard types, be explicit about side-
effects & context & ownership

• Interoperability: with current C++ code, other
languages

19

Motivation (Less)
• Speed: less vtables, more inlines, more

vectorization

• Cooperativeness: ROOT::, ROOT/, const == thread
safe

• Less magic: Reduce impact of interpreter / TClass

• Clean up: 20 years of collected “incremental
improvements”

20

Why now?

• C++ enables it (and makes TList a relic)

• cling

• Run 3 (and H*-LHC)

• Reaction to change of environment after 20 years

21

Truth And Consequence
• Virtually first backward incompatible change since

20 years!

• Will be backward compatible once moved from
ROOT::Experimental:: to ROOT::

• Goal: intentionally similar in user code but very
different in implementation / interface style

• will likely provide rewrite-tool to update code

22

Gradual Deployment
• Can’t release all in one go

• not enough resources, neither for 
experiments nor for ROOT

• Instead push fresh from keyboard

• early feedback from physicists and experiments

• co-existence of old and (more and more) new

23

Status

24

#include "ROOT/THist.h" 
#include "ROOT/TFile.h" 
 
void simple() { 
 TH1F hist(100, 0., 1.);  
 auto file = TFile::Recreate("hist.root");  
 file->Write("hpx", hist); 
}

#include "ROOT/THist.h" 
#include "ROOT/TFile.h" 
 
void simple() { 
 TH1F hist(100, 0., 1.);  
 auto file = TFile::Recreate("hist.root");  
 file->Write("hpx", hist); 
}

Surely you’re joking!

25

Well no. Status:

• Histograms: creation, fill, addition (partially)

• I/O: writing (using v6 ROOT file in the back)

• Object registration by name / old-style memory
management

26

Sketched:
• Drawing

• Fitting

• Concurrent fill through buffers

• Plugins: lib(ROOT)HistPainter

• Logging

27

Why do you care?
• ROOT: 20 years of experience, production use

• there are pet peeves that matter
(RecursiveRemove) and those that don’t matter
that much (TObject)

• We can integrate changes into physicists’
production environments

• power + responsibility

28

Concrete Examples,
Please.

Convince Thru Code

• “Trust us, we know what we are doing!” :-)

• Otherwise, here’s the code: 
 
https://root.cern.ch/doc/master/
namespaceROOT_1_1Experimental.html

• And here:

30

https://root.cern.ch/doc/master/namespaceROOT_1_1Experimental.html

“Legacy” typedefs

• TH3F looks like current ROOT

• Mostly obvious: dimension, precision

• specify which statistics to collect

31

using TH3F = THist<3, float,
 THistStatContent, THistStatUncertainty>; 
using TH3C = THist<3, char,
 THistStatContent>;

Construction

• Axis is an entity

• useful for declaring multiple histograms

• C++ allows unanimous agreement on array size

32

TAxisConfig xAxis(100, 0., 1.); 
TAxisConfig yAxis({0., 1., 2., 3.,10.}); 
TH2D histFromVars(xAxis, yAxis);
TH2D hist({100, 0., 1.}, {{0., 1., 2., 3.,10.}});

Fill

• Typical: same “language” but sturdy interface

• Here, too: well-defined array size of coordinate

33

hist.Fill({0.01, 1.02});

Speed

• Necessary, but not sufficient.

• Philippe Canal measured new / old interfaces

34

• Orange: Buffered, Green: Fill(), Blue: FillN(32)

35

0	

0.2	

0.4	

0.6	

0.8	

1	

1.2	

1.4	

1.6	

DataMoment	 Uncertainty	 DataContent	 NoStat	 NoStatEven	

TH2D	Irregular	

Buffered	 Single	 Array	stride	32	

TH2D Irregular Bins

TH2D Equidistant Bins

36

0	

0.5	

1	

1.5	

2	

2.5	

3	

3.5	

4	

4.5	

DataMoment	 Uncertainty	 DataContent	 NoStat	 NoStatEven	

TH2D	Equidistant	

Buffered	 Single	 Array	stride	32	

• Moment, SumW2, SumW, NoStats in new, NoStats

Speed of bin += weight?!
• Internally, 
 
 
is a pimpl to 
 
 
 

• Detailed but efficient. And hidden.

37

TH2D hist({100, 0., 1.},
 {{0., 1., 2., 3.,10.}});

THistImpl<Detail::THistData<2, double,
 Detail::THistDataDefaultStorage,
 THistStatContent, THistStatUncertainty>,
 TAxisEquidistant, TAxisIrregular>

THistImpl

• The axis kind

• No more “if this is variable bin, if it can grow, if etc
etc etc”

38

THistImpl<Detail::THistData<2, double,
 Detail::THistDataDefaultStorage,
 THistStatContent, THistStatUncertainty>,
 TAxisEquidistant, TAxisIrregular>

THistImpl

• Which statistics to collect and to store

• No more “collect second moment just because”

• No more “half the hist was without Sumw2()”

39

THistImpl<Detail::THistData<2, double,
 Detail::THistDataDefaultStorage,
 THistStatContent, THistStatUncertainty>,
 TAxisEquidistant, TAxisIrregular>

THistImpl

• How to store per-bin data

• super-expert customization

• E.g. allocator support

40

THistImpl<Detail::THistData<2, double,
 Detail::THistDataDefaultStorage,
 THistStatContent, THistStatUncertainty>,
 TAxisEquidistant, TAxisIrregular>

Simplicity

• Showing all of THist

• except for noexcept, constexpr, = default noise

• not showing “std::”

41

Simplicity

42

template<…>  
class THist { 
public:  
 static int GetNDim(); 
 THist(array<TAxisConfig, DIMENSIONS> axes); 
 THist(string_view histTitle, 
 array<TAxisConfig, DIMENSIONS> axes); 
… // + Overloads for 1-3 dimensions.

 ImplBase_t *GetImpl() const;

Simplicity

43

void Fill(const CoordArray_t &x, 
 Weight_t weight = (Weight_t) 1);  
void FillN(const array_view <CoordArray_t> xN, 
 const array_view <Weight_t> weightN); 
void FillN(const array_view <CoordArray_t> xN); 
 
int64_t GetEntries() const; 
Weight_t GetBinContent(const CoordArray_t &x) const; 
double GetBinUncertainty(const CoordArray_t &x) const;

Simplicity

• Concise, standard, common

44

const_iterator begin() const; 
const_iterator end() const; 
 
void swap(THist<…> &other);

Free Functions

45

/// Add two histograms with no matching axes. 
template<…>  
void Add(THist<…_TO> &to, THist<…_FROM> &from) {
…  
 auto add = [fillFuncTo, toImpl]
 (const FromCoord_t& x, FromWeight_t c)
 { 
 (toImpl->*fillFuncTo)(x, c); 
 // TODO: handle uncertainty 
 };  
 from.GetImpl()->ApplyXC(add); 
}

Free Functions

• Allow additional modularity

• Keep interfaces compact

46

/// Interface to graphics taking a
/// shared_ptr<THist>. 
template<…>  
unique_ptr <Internal::TDrawable> 
GetDrawable(shared_ptr<THist<…> hist, 
 THistDrawOptions<DIMENSIONS> opts={})

Lessons Learned
• Had to re-learn C++ - and hell that was worth it!

• Our tooling infrastructure is inadequate

• cannot express “dictionary for this template
instance needs dictionary for those template
instances”

• sorry it took us a while… but we’re on the same
page now!

47

Goal
• Provide basic implementation of new histograms

in time for Run 3 software upgrades, i.e. by the
end of the year

• enough for frameworks to start adapting

• Several other developments going on in parallel,
loosely to tightly coupled to new interfaces

• e.g. new GUI, new TTree analysis approach

48

Next Steps
• Fix bug in rootcling for storing THist [June]

• Test coverage! [June]

• Implement dictionary selection mechanism [July]

• THist::Draw, using current TCanvas in the
background [August]

• Fitting, using current fitting interfaces [August]

49

Your Run 3
• What are your requests for us?

• performance!

• parallelism!

• analysis features!

• I/O!

• Are we missing anything?

50

