
LHCb Perspective on the Future

M. Clemencic on behalf of LHCb Computing
June 7, 2016

CERN - LHCb

Table of contents

1. Software Management

2. Computing For LHCb Upgrade

2

Software Management

Migration to Git Rationale

• Many requests from developers
• Better than SVN

• faster
• distributed
• better management of tags and branches

• Large community
• newcomers may already know it
• learning it is useful for students

4

Organization of Software Projects

LHCb software is organized in projects made of packages

• package ≡ versioned entity
• project ≡ releasable entity
• main applications built on top of common projects
• loose but stable coupling projects↔ packages
• migration from CVS to SVN tightened the coupling

5

Mapping SVN onto Git

A Git repository is a versioned unit.

Different approaches possible

• one repository per package
• one repository per project
• one repository for everything

all with pros and cons.

We chose one repository per project.

6

Mapping SVN onto Git

A Git repository is a versioned unit.

Different approaches possible

• one repository per package
• one repository per project
• one repository for everything

all with pros and cons.

We chose one repository per project.

6

Mapping SVN onto Git

A Git repository is a versioned unit.

Different approaches possible

• one repository per package
• one repository per project
• one repository for everything

all with pros and cons.

We chose one repository per project.

6

Keeping the History

The command git-svn can migrate the whole history…

… only for proper projects.

Our approach:

• create a Git repository from released versions of projects
• clean up SVN projects trunks
• bind Git repositories to SVN trunks (à la git-svn)
• keep Git repositories in sync with SVN

• SVN commits pushed to Git master
• GitLab merge requests automatically applied to SVN

• close SVN write access (when ready, project by project)

7

Keeping the History

The command git-svn can migrate the whole history…
… only for proper projects.

Our approach:

• create a Git repository from released versions of projects
• clean up SVN projects trunks
• bind Git repositories to SVN trunks (à la git-svn)
• keep Git repositories in sync with SVN

• SVN commits pushed to Git master
• GitLab merge requests automatically applied to SVN

• close SVN write access (when ready, project by project)

7

Keeping the History

The command git-svn can migrate the whole history…
… only for proper projects.

Our approach:

• create a Git repository from released versions of projects
• clean up SVN projects trunks
• bind Git repositories to SVN trunks (à la git-svn)
• keep Git repositories in sync with SVN

• SVN commits pushed to Git master
• GitLab merge requests automatically applied to SVN

• close SVN write access (when ready, project by project)

7

Developers Point of View

• Whole project development
• simpler than with SVN
• plain Git based approach
• requires tools to set up build environment

• Satellite projects
• developed a few Git subcommands
• keep customization to a minimum
• non-standard use of Git can be unsettling

• Software contributions
• GitLab based workflow
• feature branches→ merge requests
• code review (optional)
• multiple production branches (devel, stable, …)

• not easy to keep track of where bug fixes went

8

Developers Point of View

• Whole project development
• simpler than with SVN
• plain Git based approach
• requires tools to set up build environment

• Satellite projects
• developed a few Git subcommands
• keep customization to a minimum
• non-standard use of Git can be unsettling

• Software contributions
• GitLab based workflow
• feature branches→ merge requests
• code review (optional)
• multiple production branches (devel, stable, …)

• not easy to keep track of where bug fixes went

8

Developers Point of View

• Whole project development
• simpler than with SVN
• plain Git based approach
• requires tools to set up build environment

• Satellite projects
• developed a few Git subcommands
• keep customization to a minimum
• non-standard use of Git can be unsettling

• Software contributions
• GitLab based workflow
• feature branches→ merge requests
• code review (optional)
• multiple production branches (devel, stable, …)

• not easy to keep track of where bug fixes went

8

Computing For LHCb Upgrade

Preparing the Upgrade

LHCb detector will be upgraded for Run 3

• 40ṀHz read-out
• software only trigger

Preparing the Computing TDR (due end 2017) on several fronts

• software framework
• event model
• non-event data
• hardware and data-flow
• data processing & analysis models
• simulation

10

Preparing the Upgrade

LHCb detector will be upgraded for Run 3

• 40ṀHz read-out
• software only trigger

Preparing the Computing TDR (due end 2017) on several fronts

• software framework
• event model
• non-event data
• hardware and data-flow
• data processing & analysis models
• simulation

10

Preparing the Upgrade

LHCb detector will be upgraded for Run 3

• 40ṀHz read-out
• software only trigger

Preparing the Computing TDR (due end 2017) on several fronts

• software framework
• event model
• non-event data
• hardware and data-flow
• data processing & analysis models
• simulation

10

Software Framework

Aiming for the migration to multithreaded Gaudi

• GaudiHive is a good starting point
• control & data flow scheduler
• backward compatibility

• we need something more
• backward compatibility is a burden we cannot sustain
• move to re-entrant stateless algorithms
• direct configuration of control flow

11

Stateless Algorithms

Backward compatible multithreading cannot scale forever.

Stateless algorithms mean

+ easier thread safety
+ better scalability
+ leaner code
- migrating a lot of code

class MySum: public TransformAlgorithm<OutputData(const Input1&, const Input2&)> {
MySum(const std::string& name, ISvcLocator* pSvc)

: TransformAlgorithm(name, pSvc,
{ KeyValue("Input1Loc", "Data1"),

KeyValue("Input2Loc", "Data2") },
KeyValue("OutputLoc", "Ouptut/Data")) {

}
// ...
OutputData operator()(const Input1& in1, const Input2& in2) const override {

return in1 + in2;
}
// ...

};

12

Stateless Algorithms

Backward compatible multithreading cannot scale forever.

Stateless algorithms mean

+ easier thread safety
+ better scalability
+ leaner code
- migrating a lot of code

class MySum: public TransformAlgorithm<OutputData(const Input1&, const Input2&)> {
MySum(const std::string& name, ISvcLocator* pSvc)

: TransformAlgorithm(name, pSvc,
{ KeyValue("Input1Loc", "Data1"),

KeyValue("Input2Loc", "Data2") },
KeyValue("OutputLoc", "Ouptut/Data")) {

}
// ...
OutputData operator()(const Input1& in1, const Input2& in2) const override {

return in1 + in2;
}
// ...

};

12

Stateless Algorithms

Backward compatible multithreading cannot scale forever.

Stateless algorithms mean

+ easier thread safety
+ better scalability
+ leaner code
- migrating a lot of code

class MySum: public TransformAlgorithm<OutputData(const Input1&, const Input2&)> {
MySum(const std::string& name, ISvcLocator* pSvc)

: TransformAlgorithm(name, pSvc,
{ KeyValue("Input1Loc", "Data1"),

KeyValue("Input2Loc", "Data2") },
KeyValue("OutputLoc", "Ouptut/Data")) {

}
// ...
OutputData operator()(const Input1& in1, const Input2& in2) const override {

return in1 + in2;
}
// ...

};

12

Event Model

Old Event Model based on C++98 optimization

• pointers and arrays of pointers
• ownership not enforced
• inheritance
• memory fragmentation

New Event Model for new C++ and hardware

• structure of arrays
• inheritance free (type erasure)
• POD structures

13

Misc

Investigating in other contexts

• Non-Event Data
• decoupling Detector Description and Conditions
• DD4HEP and CMS/ATLAS CondDB project

• Hardware and Data-Flow
• vectorization and GPUs

• Data Processing & Analysis Models
• event tag collections
• analysis trains

• Simulation
• fast simulation

just few examples

14

Hackathon Outcomes

Core Software Hackathon on May 26-27

• control flow direct configuration
• integration of stateless algorithms and DataHandles
• progress toward inheritance free event model

to be merged in Gaudi master

15

Summary

Summary

We’re not yet in the future, but we’re approaching it at a steady pace.

• switch to Git by the end of the year
• progressing on framework evolution

• multithreading, vectorization, etc.

• milestones/checkpoints defined for Upgrade TDR
• demonstrate feasibility by 2017 Q1
• define migration plan by 2017 Q2

17

	Software Management
	Computing For LHCb Upgrade

