CMS software

David Lange
June 6, 2016

D. Lange / CMS

Outline

* Threading in CMSSW

* Git / GitHub / Integration infrastructure
* Simulation and Geant4

* Conditions

D. Lange / CMS

Threaded CMSSW framework design

Run multiple data taking transitions in parallel

Run multiple modules concurrently within one
event,

— Change to user code: Needed more information about
module dependencies: Declare what data products a
module will consume in addition to what it will
produce

Run multiple tasks within a single module

concurrently

Use TBB for all of these by

breaking down work into “tasks”

D. Lange / CMS 3

Framework implementation: Thread safety
requirements

Data Products
— Information passed from module to module
— Only const access to data products is provided

— const member functions must be thread safe (Matches C++11 thread-
safety guarantee for containers)

EventSetup modules (primarily conditions information: IOV driven)

— EventSetup using one mutex

— If an EventSetup modules needs to run, the lock is taken. However,
accessing cached data does not require a lock

Producer, Analyzer, Filter modules
— Majority of user written code

— Module base class options define thread safety requirements
1. Legacy
2. Stream: One copy of module per stream (thread)
3. Global: Reentrant, sees all events
4. One: Shared by all streams (not thread safe)

D. Lange / CMS 4

Threaded CMSSW Framework concept

Producer

-
1/

Analyzer

Analyzer

f Filter Filter

(EndPath

)

Time

Results

By

Analyzer

’__,..-"'

D. Lange / CMS

0

Multithreaded status

Max RSS
20,000 4 max RSS, single multi-threaded job
20,000 © max RSS, multiple single-threaded jobs
. o
Example RSS savings from £ w0
threading in CMS 2 000
1]
(reconstruction) = 10000
0
0 4 8 12 16 20 24

Number of Cores Used

e Status of our main workflows in production
— 2015: Tier-0, HLT, data reconstruction run multi-threaded

— 2016: All major workflows are able to run efficiently in multithreaded
mode. Still working through deployment details

* Framework development goals for 2017
— Parallel running of modules within an event
— Parallel running of events in multiple lumi sections

D. Lange / CMS

Some lessons learned

* Approach based on different flavors of
algorithms (legacy, stream, one...) has eased
the transition to production

— Even simple interface changes prove to take a long
time to complete (in CMS at least).

— Debugging still largely a core SW group task:
Fortunately we have not experienced major or
extremely rare problems

— Optimization also largely a core SW group task, but
CMS tools for identifying bottlenecks are improving
* Identify modules responsible for stalls
* Helgrind
 Static analysis

Threading optimization: We use VTune very
successfully

inal Results

<no current project> - Intel VTune Amplifier (on cmsdev02.cern.ch)

ntel VTune Amplifier XE

Grouping: Function / Call Stack — I e l Q I = I Data Of Interest (CPU Metrics) ll
} CPU Time *@ B - wViewing 4 10l 2 b selected stack(s)
; Wait Time by Utiiizationw 50.0% (0.100s of 0.200s)
Function / Call Stack ‘ Effective Time by Utilization Spin Ove l

@ide @Poor POx [iceal [§Over Time | Time [ise [Poor [ox [icea [on lleWCoteanew‘c;,‘.lenblummnn] j
s [3

* edm::one: OutputMoculeBase “coEvent 0.100s Os Os| 2556.050s libFWCoreFramew...nown]:[Unknown]

b TClass::GetClass 154.708s [0s 0s 195946sff] HOFWCoreFramew....nown]{Unknown]
? [TBB worker] 77,8425 libFWCoreFramew...nown]-[Unknown] |
» I0Channel:-write 1.991s| 0s 0 s2sus| HbFWCoreFramew...nown]:[Unknown)]
b : esourcesAcquirer .21 348s
caini il o 0.213s| s 0s 3s3es| IIbFWCoreFramenw....nown][Unknown]
Pstd::_ostream _insert<char, sid::char_traits<char>> 101.317s [0s O0s 22423
libFWCoreFramew...nown] [Unknown)]
b TClass::GetStreamerinfo 15.782s || 0s O0s 20.349s) z
|
b 5td: ‘condition_variabie ‘wait 19.880s | IbFW CoreFramew...nown]:(Unknown]
B et s Crsnet Dhenannnne snenannalssamte et tamnmm § o enn o 100a1 O P PRSPPI | libFWCoreFramew...nown]:[Unknown]
' Sd.d.dlm(n):; 0100s Os Os 2556.0508 |l -y oroF ramew...nown) {Unknown]
G S j 3
QPQPQ-Qe 600s 700s 800 900s 1000s 1100 12008 13(}0:14(}0.1560.1060.‘7\')0-'060.1050.2060.2‘00- 22005 : (]! Thead ;]
reewore ANMMMAMBSSSEEGS SENESI DANNUA SRANS LiLARMSUESERISSIRAAN R MUNNSS BRAEE | e
e worker . ALMMRSRANN BEMERARSNNNRNNNE MNNNNAE SRNAREN LASMENULLL MNURN BN N RN B o wans
oo woner . SLAMMEAAN DRBMNSNM MNMMNRNNBNNGS SOOMGN MAANNI ANENGAN BNNSEN 1 MRAMMSRMNNEE | . ceu e
Eimw“""” g ' T W W W W W W W T W e
oo woner . SUNAMMAMENS SURENENS MRS DMADNSLAARSSINNS | MAMMEN SRONSAL AMNNSAN A MANRAS BEANN | oo
Teawone . AMMAMME BEANDES BNGSNE MM ADBANSS ADANNGL ANRGSAN BRSNS A MANMN BRARA | ...
meeworner . SMAMMMMAM BRSNS MREANGN DGR MRS ML ANRSRAAS DSRMNNME L MNGE Bea |
}m =[] CPU Usage
|_stant (TID: 8., .
»

D. Lange / CMS

GIT TRANSITION AND WORKFLOWS

CVS = GIT transition for CMSSW

* Transition motivated by the end of CVS
repository hosting support at CERN
[Transition completed summer of 2013]

e After an evaluation of different options
(SVN, CERN hosted Git), we migrated the
CMSSW code repository from CVS to GitHub

D. Lange / CMS 10

CVS - Git transition

e Repository structure: We stayed with one repository for all
of CMSSW

— We did not see a way to split the repository in a way that would
not allow most requests to be against just one repository

— Given 1100+ packages, we defined a mapping between code
chunk (“packages”) and software conveners responsible

* Repository structure

— One branch per release cycle plus branches as needed for
operational bug fix release builds

— Handful of people that can integrate code
* We moved beyond nearly all of the CVS specific utilities we
had developed during Run 1 (not initially, but over time)

— Using the gitHub API to drive request, testing and
integration procedure

CVS - Git transition

 Development history:

— We kept old official release tags from CVS but not the
private tags that we allowed in CVS packages

— Full file history is preserved (even if not trivial to access)

e Data files: We moved all sizeable data files into
separate repositories to keep the CMSSW repository

size manageable.

e Caching our repository locally helps considerably

D. Lange / CMS 12

Code request lifecycle (example)

* User makes a pull request to the cmssw github repository

L1TRawToDigi Fixes #1360/

Martin-Grunewald wants to merge 8 commits into cms-sw:cHssw_8_a x from

&/ Conversation 23 © Commits 8 Files changed 5

Martin-Grunewald commented a day ago

L1TRawToDigi Fixes
Includes a fixed version of @mulhearn 's #13549

Martin-Grunewald:L1TRawToDigiFixes

cms-sw member

and thus replaces that PR; and a fix by @blwiner on the number of algos being unpacked.

[y mulhearn and others added some commits 5 days ago

¢u Change empty payloads from Error te Warning, and step after 5
Merged refs/pull/13549/head from repository cms-sw
3¢ fix max algo comparison

L1TRawToDigi unpacker fixes

'i’ 3 cmsbuild added this to the Next CMSSW_8_0_X milestone a day ago

> @ cmsbuild added H-pending tests-pending orp-pending comparison-pending labels

a day ago

D. Lange / CMS

+30 -22 pEEE

Labels

comparison-available

fully-signed

I1-approved
orp-pending

tests-approved

Milestone

Next CMSSW_8 0_X

Assignee

No one—assign yourself

Notifications

4x Unsubscribe

You're receiving notifications

13

Code request lifecycle (example)

e Standard tests are requested (by “known” users)

Martin-Grunewald commented a day ago CMS-5W member

please test

 Comparisons are returned for evaluation by category managers
(these are behind the CERN SSO)

3 emsbuild commented 19 hours ago CMS-5W member

Comparison is ready
https://cmssdt.cern.ch/SDT/jenkins-artifacts/pull-request-integration/PR-13607/11729/summary.htm|

D. Lange / CMS 14

Code request lifecycle (example)

Request is approved by category manager

n mulhearn commented an hour ago cms-sw member

+1

Request is approved by release manager and integrated into CMSSW

E davidlange& commented 4 days ago CMS-SwW member

+1

> A cmsbuild added and removed orp-pending labels 4 days ago

@ M cmsbuild merged commit bd32fdé into cms-sw:CMsSW_8_8_x 4 days ago View detalls Revert
1 check passed

D. Lange / CMS 15

Successes / issues

* Git has proven much better for managing complex
change requests and has reduced the interference
between concurrent requests considerably

e GitHub has proven very reliable (much higher up time
percentage than the CERN CVS service had for CMS)

* Despite changing the vision of our workflow after the
initial migration, we have an efficient and easy to
maintain system for integration and release builds

* We left some users behind (as expected)

* |Information private to CMS needs another solution
rather than GitHub

GitHub+Jenkins workflow for releases

e Jenkins
o -JAVA based
continuous cms-bot
integration - https://github.com/cms-sw/cms-bot
system e~ - Python and shell scripts to automate
our workflows.

- Self-sentient and very friendly,
designed to comply with the 3 laws of
robotics.

¢ Gitand Github

New Github Issue:

Build <Release Name> Release is built

.
automatically.
. e * Development Release CM3SW 7 3 0 pre2 now available st CERN
D Waow 1L 1T
wan | i [CTT— Frumn D] b kvl Ve g
p—
T s i 1 oS S T (i SRR 3 L i
S -
== -

D. Lange / CMS 17

Release / integration building system

* |In production for ~2 years (100-200 release
builds). System supports ~7 active release cycles

— Build, testing, upload, install steps are each
triggered by “+1” from release manager

— Same infrastructure sits behind integration build
system (2x per day per release per architecture) and
pull request testing

* Means reduced system complexity and IBs provide a testing
facility of release build software

e Straightforward to integrate tests into each build. Tests run
vary by type of build

* Recently expanded to include testing of “external” changes
(eg, Pythia8, Geant4 version updates)

D. Lange / CMS 18

SIMULATION

D. Lange / CMS

Simulation approach including digitization and

plleup simulation

P'myz]cs
rators

1€

Particle 4-vectors M

Simulated Hits
from Pileup
Interactions

D. Lange / CMS

Simulated Hits

Simulated
Raw Data

lectronics

—
=
C

)

Imulation

= “Digitization”

20

Geant4 status in CMS

Production version of Geant4 for 2015-2016

— Geant4 version10.0+patches built in sequential mode

— Default physics List QGSP_FTFP_BERT_EML (Best agreement with CMS
test beam data in studies years ago)

— CMS produced ~9 billion events in 2015

For 2016: Most CMS simulation samples re-use the detector
simulation samples we generated in 2015

— Typical approach for us when no detector changes are made.

CMS installs a new pixel detector in 2017, so we will try to update
the detector simulation software (Pythia8 tunes, G4, etc)

D. Lange / CMS 21

Geant4 status in CMS — development for 2017

* Current development version of Geant4 in CMS is Geant4
10.2+patches

— Multi-threaded Geant4 is fully integrated with CMS
multi-threaded framework

— Updated physics lists given test beam results currently under evaluation

* Preliminarily: 10.2 shows worse agreement with test beam data.
This is under investigation together with the G4 hadronic team

— Changes to our physics list and patches to 10.2 now under evaluation

D. Lange / CMS 22

TIER-0 / RECONSTRUCTION
CONFIGURATION+WORKFLOWS

Tier-0 workflows and configuration

* Primary evolution during Run 2
— Multithreaded (typically 4 threads)
— Added “MiniAOD” output

* Meant to be small and easily reproducible starting from
Run 1 analysis data tier (“AOD”).
— Multithreading allowed us to add “prompt skims”
for physics and detector studies as part of our
Tier-0 workflow

* Previously done on Tier-1 outside of Tier-0
infrastructure

D. Lange / CMS 24

Tier-0 workflows: Repacking step

* Split events into dataset using HLT decision bits
and convert to archival RAW data format (ROOT based)

" Datafromps
l Event processing

RAW Dafaset #N
(ROOT format)

D. Lange / CMS

25

Tier-0 workflows: Reconstruction step

* Perform all event processing in single step

* Today we have only a few skims. We have ideas for how to better
isolate individual skim configurations from each other
(and rest of application) in case their complexity grows

RAW Dataset #N
(ROOT format)

RECO data P

I ~l ° 11 A
~l ° 11 A

AOD data e rea
— Monitoring Skim #N
MiniAOD data histograms (Physics or calib)

D. Lange / CMS 26

Tier-0 workflows: Merging and Harvesting

~l ° 1IN 1

~l ° 1IN 1
~l ° 1IN 1

Mor;itoring Skim #N
histograms (Physics or calib)

‘ Aggregation ‘ Aggregation
Full Run statistics Prompt
uploaded to GUI Calibration

D. Lange / CMS 27

CONDITIONS

D. Lange / CMS

Alignment and Calibration (non-event) data:
Run 2 Conditions system in CMS

e Conditions infrastructure rebuilt based on lessons
learned during Run 1

— Reduced complexity of data representation: Multiple
tables per conditions object became 1 blob

— “Global tags” handled in more natural way

e CMS conditions vary with run/lumi (mostly)
or time (a few)

— Multithreaded framework relies on lumi boundaries as
the synchronization point

D. Lange / CMS

29

Alignment and Calibration (non-event) data:
Run 2 Conditions system in CMS

3
Conditions
Data Oracle
Software SQUID

--| Coral Server |—--______'

EventSetup
ECalAlignment{_____ A
Pixel Alignmenc __A [B}~

Frontier

ESHandle<TrackerGeometry> geomPtr;
eventSetup.get<TrackerAlignmentRecord>()

.get(geomPtr);

D. Lange / CMS 30

Conditions model

 Conditions data: Serialized and stored as blob in database

— We chose to use boost serialization package

 Interval of validity (IOV):

— Defined by “since” (time, lumi) with an open IOV

— We do not have a use case for very
fine grained IOVs. Would require
an interface to retrieve “until”
(time, lumi) for framework
syncronization

Payload0
Version
Streamerinfo
hash

Global Tag Tag1
TypeName

RecordName

LabelName
lastSince
lastUpdatedloV
loV Pagelndex

<dataAsBlob>

loV page0
since0 payload0

* Global tag: Defined by a sincet payioa

consistent set of tags sinceM i:-l-ayloadMJ
_ Payload
1GT= 1;0?3050 Sizes:
300 Tags loVs 100 B -
O(100) MB
31

D. Lange / CMS

Assessment after one year of operations

* Load on DBAs and experts-on-call is dramatically reduced

* Oracle satisfies our requirement for a highly reliable
database service
— With blob and our IOV schema, DB queries are simple and
easy to maintain
— Now able to investigate other solutions for Oracle
functionality for Run 3.

e Schema evolution:
— So far users have not faced issues with the lack of schema
evolution support in the serialization

— There is however a strong coupling to boost version (lack of
“forward” compatibility. Needs to be solved in longer term

but not a risk to data taking operations

D. Lange / CMS 32

Questions?

D. Lange / CMS

33

Russian Roulette: Sampling of low-energy

particles in Geant4

Method from neutron shielding calculations: Track only a
small fraction of low-energy particles through the
detector with no noticeable change in simulation results

— We found that it was necessarily to have sampling factors and
thresholds that depend on both detector region and particle

type.
Two parameters:

— RR factor (1/W): Fraction W*W,
of particles to keep

— Upper energy limit (Exg)

Hits from Particles below W,
Erg that are tracked are

given a weight W. .8 T %

D. Lange / CMS 34

Russian Roulette now used by default after
long tuning and validation process

|_Neutron kinetic energy for 100 Gev 1| _
wE i Lo | ... E<10 MeV for neutrons
«E- . Subjectto < Tod Lo T

...RR sampling

1: — High energy
E, (log10(E/MeV)) nell-trons

* RR factor of W=10 for neutrons and gammas found to give
between 25% and 40% performance improvement with
no observable effect on physics output

— Energy and shower shape response in the high-resolution

ECAL barrel detector were the most sensitive to RR parameter
tuning

D. Lange / CMS 35

