
CMS software

David Lange

June 6, 2016

D. Lange / CMS 1

Outline

• Threading in CMSSW

• Git / GitHub / Integration infrastructure

• Simulation and Geant4

• Conditions

D. Lange / CMS 2

Threaded CMSSW framework design

• Run multiple data taking transitions in parallel

• Run multiple modules concurrently within one
event,
– Change to user code: Needed more information about

module dependencies: Declare what data products a
module will consume in addition to what it will
produce

• Run multiple tasks within a single module
concurrently

D. Lange / CMS 3

Use TBB for all of these by
breaking down work into “tasks”

Framework implementation: Thread safety
requirements

Data Products
– Information passed from module to module
– Only const access to data products is provided
– const member functions must be thread safe (Matches C++11 thread-

safety guarantee for containers)

EventSetup modules (primarily conditions information: IOV driven)
– EventSetup using one mutex
– If an EventSetup modules needs to run, the lock is taken. However,

accessing cached data does not require a lock

Producer, Analyzer, Filter modules
– Majority of user written code
– Module base class options define thread safety requirements

1. Legacy
2. Stream: One copy of module per stream (thread)
3. Global: Reentrant, sees all events
4. One: Shared by all streams (not thread safe)

D. Lange / CMS 4

Threaded CMSSW Framework concept

D. Lange / CMS 5

Multithreaded status

• Status of our main workflows in production
– 2015: Tier-0, HLT, data reconstruction run multi-threaded
– 2016: All major workflows are able to run efficiently in multithreaded

mode. Still working through deployment details

• Framework development goals for 2017
– Parallel running of modules within an event
– Parallel running of events in multiple lumi sections

D. Lange / CMS 6

Example RSS savings from
threading in CMS
(reconstruction)

Some lessons learned

• Approach based on different flavors of
algorithms (legacy, stream, one…) has eased
the transition to production
– Even simple interface changes prove to take a long

time to complete (in CMS at least).
– Debugging still largely a core SW group task:

Fortunately we have not experienced major or
extremely rare problems

– Optimization also largely a core SW group task, but
CMS tools for identifying bottlenecks are improving
• Identify modules responsible for stalls
• Helgrind
• Static analysis

D. Lange / CMS 7

Threading optimization: We use VTune very
successfully

D. Lange / CMS 8

GIT TRANSITION AND WORKFLOWS

D. Lange / CMS 9

CVS GIT transition for CMSSW

• Transition motivated by the end of CVS
repository hosting support at CERN
[Transition completed summer of 2013]

• After an evaluation of different options
(SVN, CERN hosted Git), we migrated the
CMSSW code repository from CVS to GitHub

D. Lange / CMS 10

CVS Git transition

• Repository structure: We stayed with one repository for all
of CMSSW
– We did not see a way to split the repository in a way that would

not allow most requests to be against just one repository
– Given 1100+ packages, we defined a mapping between code

chunk (“packages”) and software conveners responsible

• Repository structure
– One branch per release cycle plus branches as needed for

operational bug fix release builds
– Handful of people that can integrate code

• We moved beyond nearly all of the CVS specific utilities we
had developed during Run 1 (not initially, but over time)
– Using the gitHub API to drive request, testing and

integration procedure

D. Lange / CMS 11

CVS Git transition

• Development history:
– We kept old official release tags from CVS but not the

private tags that we allowed in CVS packages

– Full file history is preserved (even if not trivial to access)

• Data files: We moved all sizeable data files into
separate repositories to keep the CMSSW repository
size manageable.

• Caching our repository locally helps considerably

D. Lange / CMS 12

Code request lifecycle (example)

• User makes a pull request to the cmssw github repository

D. Lange / CMS 13

Code request lifecycle (example)

• Standard tests are requested (by “known” users)

D. Lange / CMS 14

• Comparisons are returned for evaluation by category managers
(these are behind the CERN SSO)

Code request lifecycle (example)

Request is approved by category manager

D. Lange / CMS 15

Request is approved by release manager and integrated into CMSSW

Successes / issues

• Git has proven much better for managing complex
change requests and has reduced the interference
between concurrent requests considerably

• GitHub has proven very reliable (much higher up time
percentage than the CERN CVS service had for CMS)

• Despite changing the vision of our workflow after the
initial migration, we have an efficient and easy to
maintain system for integration and release builds

• We left some users behind (as expected)

• Information private to CMS needs another solution
rather than GitHub

D. Lange / CMS 16

GitHub+Jenkins workflow for releases

D. Lange / CMS 17

Release / integration building system

• In production for ~2 years (100-200 release
builds). System supports ~7 active release cycles
– Build, testing, upload, install steps are each

triggered by “+1” from release manager
– Same infrastructure sits behind integration build

system (2x per day per release per architecture) and
pull request testing
• Means reduced system complexity and IBs provide a testing

facility of release build software
• Straightforward to integrate tests into each build. Tests run

vary by type of build
• Recently expanded to include testing of “external” changes

(eg, Pythia8, Geant4 version updates)

D. Lange / CMS 18

SIMULATION

D. Lange / CMS 19

Simulation approach including digitization and
pileup simulation

Physics
Generators

Geometry/

Material

Description

Geant 4

Electronics
Simulation

Noise Model
Simulated

Raw Data

Particle 4-vectors

Simulated HitsSimulated Hits

from Pileup

Interactions

= “Digitization”
20D. Lange / CMS

Geant4 status in CMS

• Production version of Geant4 for 2015-2016
– Geant4 version10.0+patches built in sequential mode

– Default physics List QGSP_FTFP_BERT_EML (Best agreement with CMS
test beam data in studies years ago)

– CMS produced ~9 billion events in 2015

• For 2016: Most CMS simulation samples re-use the detector
simulation samples we generated in 2015
– Typical approach for us when no detector changes are made.

• CMS installs a new pixel detector in 2017, so we will try to update
the detector simulation software (Pythia8 tunes, G4, etc)

21D. Lange / CMS

Geant4 status in CMS – development for 2017

• Current development version of Geant4 in CMS is Geant4
10.2+patches
– Multi-threaded Geant4 is fully integrated with CMS

multi-threaded framework

– Updated physics lists given test beam results currently under evaluation

• Preliminarily: 10.2 shows worse agreement with test beam data.
This is under investigation together with the G4 hadronic team
– Changes to our physics list and patches to 10.2 now under evaluation

22D. Lange / CMS

TIER-0 / RECONSTRUCTION
CONFIGURATION+WORKFLOWS

D. Lange / CMS 23

Tier-0 workflows and configuration

• Primary evolution during Run 2
– Multithreaded (typically 4 threads)

– Added “MiniAOD” output
• Meant to be small and easily reproducible starting from

Run 1 analysis data tier (“AOD”).

– Multithreading allowed us to add “prompt skims”
for physics and detector studies as part of our
Tier-0 workflow
• Previously done on Tier-1 outside of Tier-0

infrastructure

D. Lange / CMS 24

Tier-0 workflows: Repacking step

• Split events into dataset using HLT decision bits
and convert to archival RAW data format (ROOT based)

D. Lange / CMS 25

Data from P5

Dataset #1
(ROOT format)

Dataset #1
(ROOT format)

Dataset #1
(ROOT format)
RAW Dataset #N
(ROOT format)

Event processing

Tier-0 workflows: Reconstruction step

• Perform all event processing in single step
• Today we have only a few skims. We have ideas for how to better

isolate individual skim configurations from each other
(and rest of application) in case their complexity grows

D. Lange / CMS 26

RAW Dataset #N
(ROOT format)

RECO data

AOD data

MiniAOD data
Monitoring
histograms

Skim #1
(Physics or calib)

Skim #1
(Physics or calib)

Skim #1
(Physics or calib)

Skim #N
(Physics or calib)

Tier-0 workflows: Merging and Harvesting

D. Lange / CMS 27

Monitoring
histograms

Monitoring
histograms

Monitoring
histograms

Monitoring
histograms

Monitoring
histograms

Full Run statistics
uploaded to GUI

Prompt
Calibration

Skim #N
(Physics or calib)

Skim #N
(Physics or calib)

Skim #N
(Physics or calib)

Skim #N
(Physics or calib)

Skim #N
(Physics or calib)

AggregationAggregation

CONDITIONS

D. Lange / CMS 28

Alignment and Calibration (non-event) data:
Run 2 Conditions system in CMS

• Conditions infrastructure rebuilt based on lessons
learned during Run 1
– Reduced complexity of data representation: Multiple

tables per conditions object became 1 blob
– “Global tags” handled in more natural way

• CMS conditions vary with run/lumi (mostly)
or time (a few)
– Multithreaded framework relies on lumi boundaries as

the synchronization point

D. Lange / CMS 29

Alignment and Calibration (non-event) data:
Run 2 Conditions system in CMS

D. Lange / CMS 30

Conditions model

• Conditions data: Serialized and stored as blob in database
– We chose to use boost serialization package

• Interval of validity (IOV):
– Defined by “since” (time, lumi) with an open IOV

– We do not have a use case for very
fine grained IOVs. Would require
an interface to retrieve “until”
(time, lumi) for framework
syncronization

• Global tag: Defined by a
consistent set of tags

D. Lange / CMS 31

Assessment after one year of operations

• Load on DBAs and experts-on-call is dramatically reduced
• Oracle satisfies our requirement for a highly reliable

database service
– With blob and our IOV schema, DB queries are simple and

easy to maintain
– Now able to investigate other solutions for Oracle

functionality for Run 3.

• Schema evolution:
– So far users have not faced issues with the lack of schema

evolution support in the serialization
– There is however a strong coupling to boost version (lack of

“forward” compatibility. Needs to be solved in longer term
but not a risk to data taking operations

D. Lange / CMS 32

Questions?

D. Lange / CMS 33

Russian Roulette: Sampling of low-energy
particles in Geant4

• Method from neutron shielding calculations: Track only a
small fraction of low-energy particles through the
detector with no noticeable change in simulation results
– We found that it was necessarily to have sampling factors and

thresholds that depend on both detector region and particle
type.

• Two parameters:
– RR factor (1/W): Fraction

of particles to keep
– Upper energy limit (ERR)

• Hits from Particles below
ERR that are tracked are
given a weight W.

34D. Lange / CMS

Russian Roulette now used by default after
long tuning and validation process

• RR factor of W=10 for neutrons and gammas found to give
between 25% and 40% performance improvement with
no observable effect on physics output
– Energy and shower shape response in the high-resolution

ECAL barrel detector were the most sensitive to RR parameter
tuning

35D. Lange / CMS

