CMS software

David Lange June 6, 2016

Outline

- Threading in CMSSW
- Git / GitHub / Integration infrastructure
- Simulation and Geant4
- Conditions

Threaded CMSSW framework design

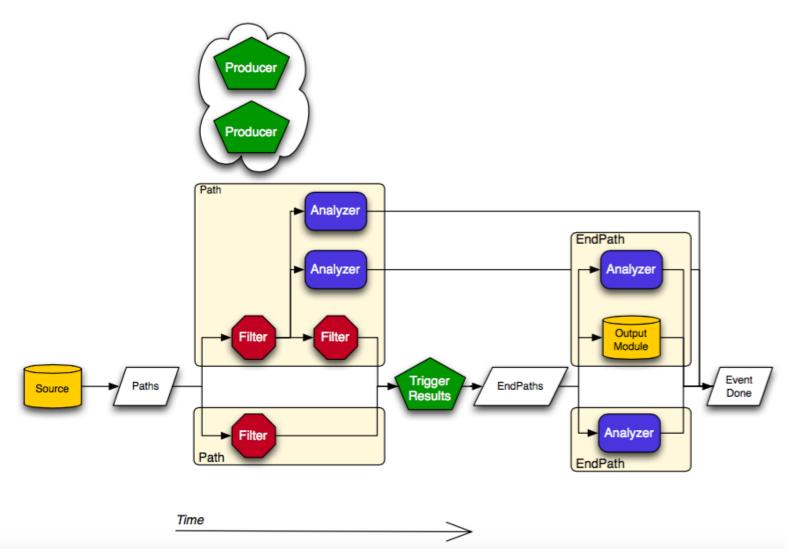
- Run multiple data taking transitions in parallel
- Run multiple modules concurrently within one event,
 - Change to user code: Needed more information about module dependencies: Declare what data products a module will consume in addition to what it will produce
- Run multiple tasks within a single module concurrently

Use TBB for all of these by breaking down work into "tasks"

Framework implementation: Thread safety requirements

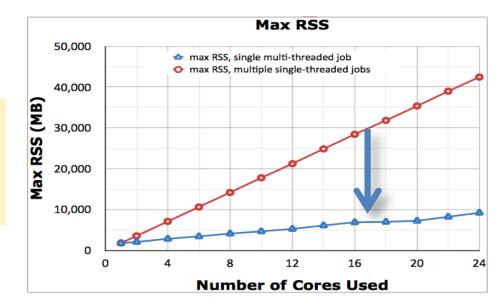
Data Products

- Information passed from module to module
- Only const access to data products is provided
- const member functions must be thread safe (Matches C++11 threadsafety guarantee for containers)


EventSetup modules (primarily conditions information: IOV driven)

- EventSetup using one mutex
- If an EventSetup modules needs to run, the lock is taken. However, accessing cached data does not require a lock

Producer, Analyzer, Filter modules


- Majority of user written code
- Module base class options define thread safety requirements
 - 1. Legacy
 - 2. Stream: One copy of module per stream (thread)
 - 3. Global: Reentrant, sees all events
 - 4. **One:** Shared by all streams (not thread safe)

Threaded CMSSW Framework concept

Multithreaded status

Example RSS savings from threading in CMS (reconstruction)

- Status of our main workflows in production
 - 2015: Tier-0, HLT, data reconstruction run multi-threaded
 - 2016: All major workflows are able to run efficiently in multithreaded mode. Still working through deployment details
- Framework development goals for 2017
 - Parallel running of modules within an event
 - Parallel running of events in multiple lumi sections

Some lessons learned

- Approach based on different flavors of algorithms (legacy, stream, one...) has eased the transition to production
 - Even simple interface changes prove to take a long time to complete (in CMS at least).
 - Debugging still largely a core SW group task: Fortunately we have not experienced major or extremely rare problems
 - Optimization also largely a core SW group task, but CMS tools for identifying bottlenecks are improving
 - Identify modules responsible for stalls
 - Helgrind
 - Static analysis

Threading optimization: We use VTune very successfully

	<no current="" project=""> - Intel VTune An</no>	plifier	(on cr	nsdev02.cern.ch)		- *	
🗛 🖄 😰 🖡 🛛 🗣 🖨 🕐 Welcome	r003cc ×						
Concurrency Hotspots by CPU Usage v	viewpoint (<u>change</u>) @					Intel VTune Amplifier XE 20	
👔 🔜 Collection Log 🥥 Analysis Target 🚔 Analysis Ty	ype 🖪 Summary 🚳 Bottom-up 🔹 Caller/Cu	allee 🔥	Top-do	wn Tree 🔣 Platform			
Grouping: Function / Call Stack					: *	Data Of Interest (CPU Metrics)	
	CPU Time 🛠 🖾			* 10	(B)	Viewing 4 1 of 2 > selected stack(
Function / Call Stack	5		Spin Ove	Wait Time by Util	ization	50.0% (0.100s of 0.200s)	
	lidie Poor Ok lideal Over	Time	Time	📗 Idle 📕 Poor 🦲 Ok	ideal Ove	libFWCoreFramewoent - [Unknown]	
edm::one::OutputModuleBase::doEvent	0.100s	Os	Os	2556.050s		libFWCoreFramewnown]:[Unknown]	
Class::GetClass	154.798s	0s	0s	195.9465 🚺		libFWCoreFramewnown]:[Unknown]	
[TBB worker]				77.842s		libFWCoreFramewnown]:[Unknown]	
IOChannel::write	1.991s	Os	0s	52.544s		libFWCoreFramewnown]:[Unknown]	
edm::SharedResourcesAcquirer::lock	0.213s	0s	Os	36.348s		libFWCoreFramewnown]:[Unknown]	
std::ostream_insert <char, std::char_traits<char="">></char,>	101.317s	Os	0s	22.4235		libFWCoreFramewnown]:[Unknown]	
TClass::GetStreamerInfo	15.782s	Os	0s	20.3495		libFWCoreFramewnown]:[Unknown]	
std::condition_variable::walt	0.100-1	00	0.0	19.880s		libFWCoreFramewnown]:[Unknown	
Selected 1 row(s): 0.100		Os	13 11141	2556.050s		
	•				2		
Q+Q+Q-Q+ 600s 700s 800s 900s	1000s 1100s 1200s 1300s 1400s		1600s	1700s 1800s 19			
TBB Worker	AND AND A ADDRESS OF A DESCRIPTION OF	La V. C.	1.00		A STATE OF THE OWNER	Running 🗠 🐨 🐨 Running	
TBB Worker		10.0		ALL		Waits	
TBB Worker							
TBB Worker						Spin an	
TBB Worker		111		A REAL PROPERTY AND		CPU San	
TBB Worker	San All			Contraction of the second		Transiti	
TBB Worker	STORE AND A ST	111		a construction of the second	and a manual set	CPU Usage	

GIT TRANSITION AND WORKFLOWS

$CVS \rightarrow GIT$ transition for CMSSW

 Transition motivated by the end of CVS repository hosting support at CERN [Transition completed summer of 2013]

 After an evaluation of different options (SVN, CERN hosted Git), we migrated the CMSSW code repository from CVS to GitHub

$CVS \rightarrow Git transition$

- Repository structure: We stayed with one repository for all of CMSSW
 - We did not see a way to split the repository in a way that would not allow most requests to be against just one repository
 - Given 1100+ packages, we defined a mapping between code chunk ("packages") and software conveners responsible
- Repository structure
 - One branch per release cycle plus branches as needed for operational bug fix release builds
 - Handful of people that can integrate code
- We moved beyond nearly all of the CVS specific utilities we had developed during Run 1 (not initially, but over time)
 - Using the gitHub API to drive request, testing and integration procedure

$CVS \rightarrow Git transition$

- Development history:
 - We kept old official release tags from CVS but not the private tags that we allowed in CVS packages
 - Full file history is preserved (even if not trivial to access)
- Data files: We moved all sizeable data files into separate repositories to keep the CMSSW repository size manageable.
- Caching our repository locally helps considerably

Code request lifecycle (example)

• User makes a pull request to the cmssw github repository

L1TR	awToDigi Fixes #13607			Edit
n Open	Martin-Grunewald wants to merge 8 commits into cms-sw:CMSSW_8_0_X from Martin-Grunewa	ld:L1TRawToDigiFixes		
çភ <mark> Conve</mark>	rsation 23 - Commits 8 (1) Files changed 5		+30 -22	
	Martin-Grunewald commented a day ago	s-sw member	Labels	¢
			comparison-available	
	L1TRawToDigi Fixes Includes a fixed version of @mulhearn 's #13549		fully-signed	
	and thus replaces that PR; and a fix by @blwiner on the number of algos being unpacked	I1-approved		
			orp-pending	
	mulhearn and others added some commits 5 days ago		tests-approved	
	🛜 Change empty payloads from Error to Warning, and stop after 5	✓ 66eb1d1	Milestone	ö
	👖 Merged refs/pull/13549/head from repository cms-sw	4c8d048	Milestone	146
	-o- 🙀 fix max algo comparison	6adb4aa	Next CMSSW_8_0_X	
	🚺 L1TRawToDigi unpacker fixes	a8f454b	Assignee	ġ
			No one-assign yourself	346
	🕆 🚊 cmsbuild added this to the Next CMSSW_8_0_X milestone a day ago		No one—assign yoursen	
			Notifications	
	🛇 🧸 cmsbuild added 11-pending pending-signatures tests-pending orp-pending compar	ison-pending labels	▲× Unsubscribe	
	a day ago		You're receiving notifications	

Code request lifecycle (example)

Standard tests are requested (by "known" users)

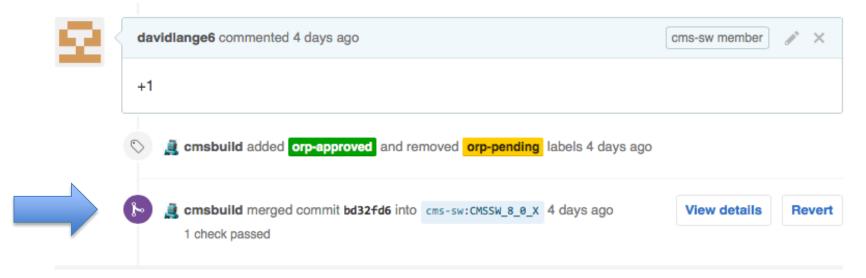
Martin-Grunewald commented a day ago	cms-sw member	×	
please test			

 Comparisons are returned for evaluation by category managers (these are behind the CERN SSO)

cmsbuild commented 19 hours ago

cms-sw member 🛛 💉 🚿

Comparison is ready


https://cmssdt.cern.ch/SDT/jenkins-artifacts/pull-request-integration/PR-13607/11729/summary.html

Code request lifecycle (example)

Request is approved by category manager

Request is approved by release manager and integrated into CMSSW

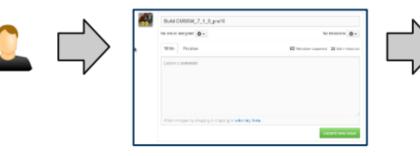
Successes / issues

- Git has proven much better for managing complex change requests and has reduced the interference between concurrent requests considerably
- GitHub has proven very reliable (much higher up time percentage than the CERN CVS service had for CMS)
- Despite changing the vision of our workflow after the initial migration, we have an efficient and easy to maintain system for integration and release builds
- We left some users behind (as expected)
- Information private to CMS needs another solution rather than GitHub

GitHub+Jenkins workflow for releases

Jenkins
JA

- -JAVA based continuous integration system
- Git and Github

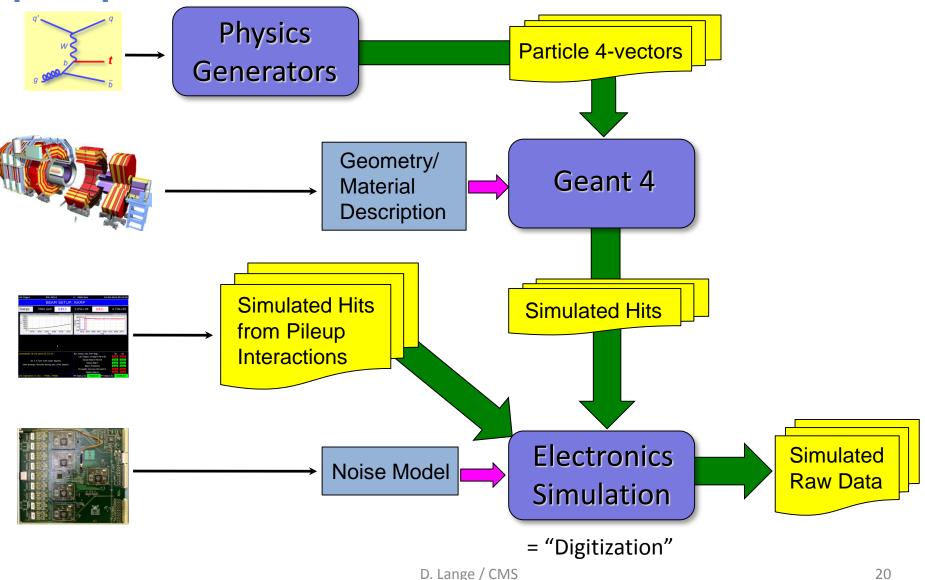

cms-bot

- https://github.com/cms-sw/cms-bot
- Python and shell scripts to automate our workflows.
- Self-sentient and very friendly, designed to comply with the 3 laws of robotics.

New Github Issue:

Build <Release Name>

Release is built automatically.



Release / integration building system

- In production for ~2 years (100-200 release builds). System supports ~7 active release cycles
 - Build, testing, upload, install steps are each triggered by "+1" from release manager
 - Same infrastructure sits behind integration build system (2x per day per release per architecture) and pull request testing
 - Means reduced system complexity and IBs provide a testing facility of release build software
 - Straightforward to integrate tests into each build. Tests run vary by type of build
 - Recently expanded to include testing of "external" changes (eg, Pythia8, Geant4 version updates)

SIMULATION

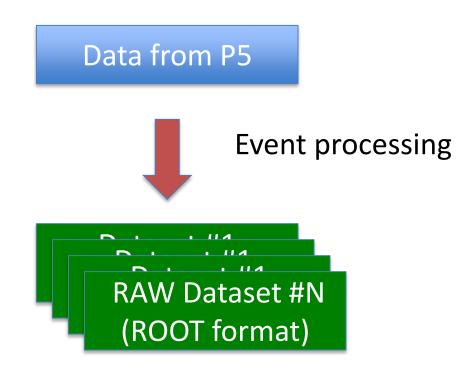
Simulation approach including digitization and pileup simulation

Geant4 status in CMS

- Production version of Geant4 for 2015-2016
 - Geant4 version10.0+patches built in sequential mode
 - Default physics List QGSP_FTFP_BERT_EML (Best agreement with CMS test beam data in studies years ago)
 - CMS produced ~9 billion events in 2015
- For 2016: Most CMS simulation samples re-use the detector simulation samples we generated in 2015
 - Typical approach for us when no detector changes are made.
- CMS installs a new pixel detector in 2017, so we will try to update the detector simulation software (Pythia8 tunes, G4, etc)

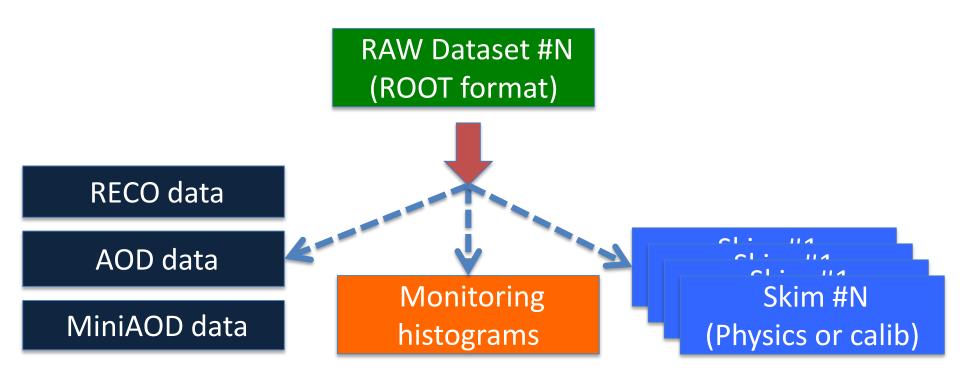
Geant4 status in CMS – development for 2017

- Current development version of Geant4 in CMS is Geant4 10.2+patches
 - Multi-threaded Geant4 is fully integrated with CMS multi-threaded framework
 - Updated physics lists given test beam results currently under evaluation
- Preliminarily: 10.2 shows worse agreement with test beam data. This is under investigation together with the G4 hadronic team
 - Changes to our physics list and patches to 10.2 now under evaluation

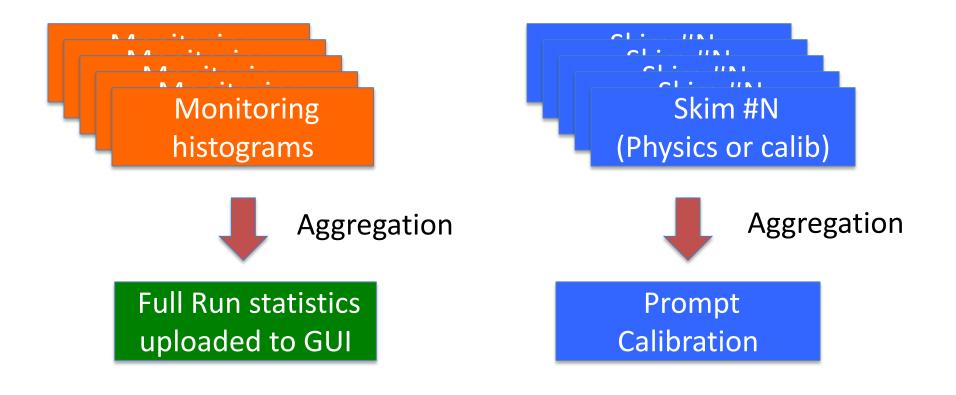

TIER-0 / RECONSTRUCTION CONFIGURATION+WORKFLOWS

Tier-0 workflows and configuration

- Primary evolution during Run 2
 - Multithreaded (typically 4 threads)
 - Added "MiniAOD" output
 - Meant to be small and easily reproducible starting from Run 1 analysis data tier ("AOD").
 - Multithreading allowed us to add "prompt skims" for physics and detector studies as part of our Tier-0 workflow
 - Previously done on Tier-1 outside of Tier-0 infrastructure


Tier-0 workflows: Repacking step

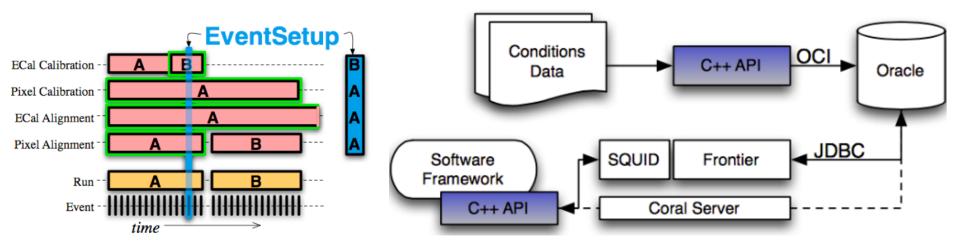
 Split events into dataset using HLT decision bits and convert to archival RAW data format (ROOT based)



Tier-0 workflows: Reconstruction step

- Perform all event processing in single step
- Today we have only a few skims. We have ideas for how to better isolate individual skim configurations from each other (and rest of application) in case their complexity grows

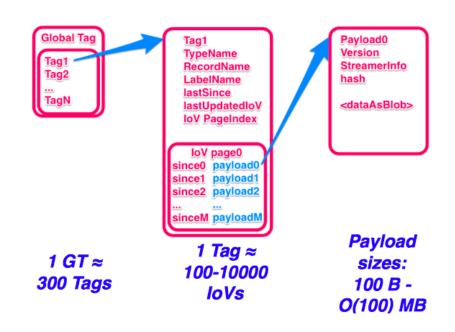
Tier-0 workflows: Merging and Harvesting



CONDITIONS

Alignment and Calibration (non-event) data: Run 2 Conditions system in CMS

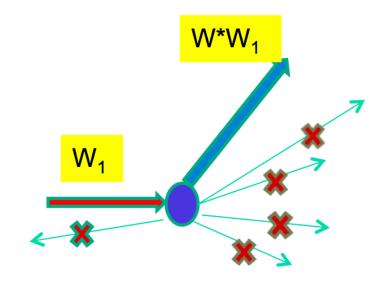
- Conditions infrastructure rebuilt based on lessons learned during Run 1
 - Reduced complexity of data representation: Multiple tables per conditions object became 1 blob
 - "Global tags" handled in more natural way
- CMS conditions vary with run/lumi (mostly) or time (a few)
 - Multithreaded framework relies on lumi boundaries as the synchronization point


Alignment and Calibration (non-event) data: Run 2 Conditions system in CMS

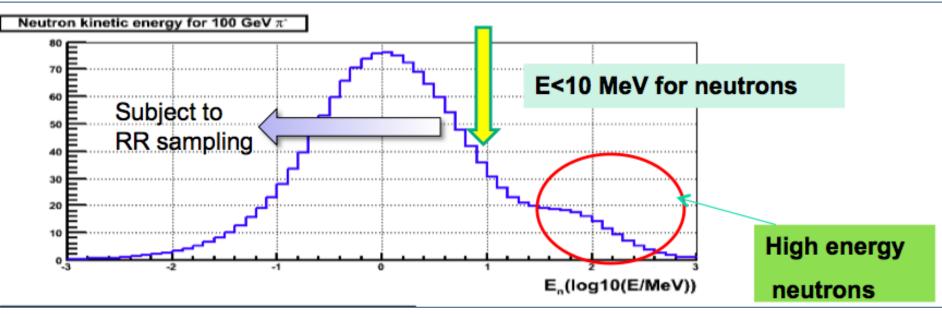
ESHandle<TrackerGeometry> geomPtr; eventSetup.get<TrackerAlignmentRecord>() .get(geomPtr);

Conditions model

- Conditions data: Serialized and stored as blob in database
 - We chose to use boost serialization package
- Interval of validity (IOV):
 - Defined by "since" (time, lumi) with an open IOV
 - We do not have a use case for very fine grained IOVs. Would require an interface to retrieve "until" (time, lumi) for framework syncronization
- Global tag: Defined by a consistent set of tags


Assessment after one year of operations

- Load on DBAs and experts-on-call is dramatically reduced
- Oracle satisfies our requirement for a highly reliable database service
 - With blob and our IOV schema, DB queries are simple and easy to maintain
 - Now able to investigate other solutions for Oracle functionality for Run 3.
- Schema evolution:
 - So far users have not faced issues with the lack of schema evolution support in the serialization
 - There is however a strong coupling to boost version (lack of "forward" compatibility. Needs to be solved in longer term but not a risk to data taking operations


Questions?

Russian Roulette: Sampling of low-energy particles in Geant4

- Method from neutron shielding calculations: Track only a small fraction of low-energy particles through the detector with no noticeable change in simulation results
 - We found that it was necessarily to have sampling factors and thresholds that depend on both detector region and particle type.
- Two parameters:
 - RR factor (1/W): Fraction of particles to keep
 - Upper energy limit (E_{RR})
- Hits from Particles below E_{RR} that are tracked are given a weight W.

Russian Roulette now used by default after long tuning and validation process

- RR factor of W=10 for neutrons and gammas found to give between 25% and 40% performance improvement with no observable effect on physics output
 - Energy and shower shape response in the high-resolution ECAL barrel detector were the most sensitive to RR parameter tuning