Re-Entrant Algorithms
in AthenaMT

Charles Leggett
June 6 2016

Glasgow TIM

>
A
rrrrrrr ""|

e Motivation

» AthenaMT allows us to clone Algorithms
> multiple instances of the same Algorithm

» the Scheduler can concurrently execute the same Algorithm in
different events (in different threads) by using different clones

« don't need to worry about (most) thread safety issues, since each thread
gets its own copy, and they don't interfere with each other

* Cloning Algorithms allows us to balance memory usage with
scheduling concurrency

> more clones = more opportunities to run simultaneously
> but, more clones = more memory
> we can control the number of clones of any Algorithm at run time

* Re-entrant Algorithms allow us to run the same Algorithm
concurrently in different threads, but minimize memory usage
by only creating ONE Algorithm instance

> Win-win scenario!

. Leggett 2016-06-06

Re-Entrant Algorithm Issues

* nothing good is free....

* Downside: Re-entrant Algorithms MUST be fully thread safe

> normally cloned algorithms don't need to be completely thread
safe as each thread gets it's own instance.
 though they do need to avoid/protect thread hostile semantics like statics

 thread safety is HARD to implement, and re-entrant Algorithms
will have to be (re)designed from the ground up

« Algorithm::execute() is const for re-entrant Algs

> we'll give it a new signature execute_R() const to explicitly
differentiate

« we also need to explicitly pass the EventContext
» normally it's part of the Algorithm
© » execute_R(const EventContext&) const

Gaudi Class Hierarchy

[IAlgorithm]

T

{ Algorithm

A

UserAlg J

[ReEntAlgorithm

UserReEntAng

BERKELEY LAB

Base Class Changes

[
IAlgorithm

bool isReEntrant() const;

StatusCode execute R(const EventContext&) const
StatusCode sysExecute_R(const EventContext&)

-
Algorithm: public IAlgorithm

bool isReEntrant() const { return false; }

StatusCode execute R(const EventContext&) const {
return StatusCode: :FAILURE;

}

StatusCode sysExecute_R(const EventContext&) {
return StatusCode: :FAILIRE;

}

C. Leggett

2016-06-06

ol Base Class Changes

[
ReEntAlgorithm : public Algorithm
bool isReEntrant() const { return true; }

StatusCode execute() {
return execute R(Gaudi: :Hive: :currentContext());

}

StatusCode sysExecute_R(const EventContext& ctx) {

status = execute_R(ctx);

0 C. Leggett 2016-06-06

g AthAlg Class Hierarchy

[IAlgorithm]

{ Algorithm

A

AthAlgorithm

[ReEntAlgorithm

UserAthAlg J

AthReEntAlgorithm

UserAthReEntAng

g AthAlg Class Hierarchy

[IAlgorithm]
|AthA gorithm
} AthAlgCanmn<Algor1thn>

AthAlgCommon<>J

{ Algorithm

[ReEntAlgorithm A

UserAthAlg]

tAthReEntAlgorithm
AthAlgCommon<ReEntAlgorithm>

UserAthReEntAlg]

6 C. Leggett 2016-06-06

>
A
rrrrrrr r1

e Problems

* Algorithm base class keeps some event dependent status
iInformation as member data

> filter passed flag
» executed flag
* Other event dependent status info is kept in the EventContext
(which is const when passed to the Alg)
» event failed

* All this needs to be moved elsewhere

* New service AlgExecMgr which keeps track of:

» execution state of each Alg in each slot

* filterPassed, isExecuted, execStatus

« vector< map<AlgKey, AlgExecState> > (one vector entry per slot)
» overall execution status of the event

« Success / AlgFail / AlgStall / Other err

« vector< EventStatus > (one vector entry per slot)

C. Leggett 2016-06-06

S| How It Works

* AlgResourcePool
> will only create one instance of a ReEntAlgorithm

> when asked for an re-entrant alg instance by the Scheduler, will
always return the same one

» AlgoExecutionTask

> if alg is re-entrant, will call alg->sysExecute_R(evtCtx) instead
of alg->sysExecute()

> after execution, sets alg / event status via the AlgExecMgr

* Scheduler
» sets/resets all alg / event status via the AlgExecMgr

~

A
cocreoe| "

BERKELEY LAB

User Re-entrant Algorithm

-

class MyReEntAlg : public AthReEntAlgorithm {
public:
StatusCode initialize();
StatusCode execute_R(const EventContext&) const;
StatusCode finalize();

private:
SG: :ReadHandleKey<EventInfo> m_evt;
SG: :WriteHandleKey<HiveDataObj> m_wrh1;

instance number (0..n) of the Alg

- always 0 for re-ent Algs

}

StatusCode MyReEntAlg::execute_R(copft EventContext& ctx) const {

ATH_MSG_INFO("execute R: " << index() << " on " << ctx);

SG: :ReadHandle<EventInfo> evt(m_evt);
ATH_MSG_INFO(" EventInfo: r: " << evt->event _ID()->run_number()
<< " e: " << evt->event_ID()->event_number());

\
- have to use VarHandleKeys,
SG: :WriteHandle<HiveDataObj> wh1(m_wrh1); and create VarHandle on
ATH_CHECK(wh1.record(CxxUtils::make_unique<HiveDataObj> |stack
(HiveDataObj (10000)))

),
ATH_MSG_INFO(" write: " << whil.key() << " = " << wh1->val());

return StatusCode: :SUCCESS;

C. Leggett 2016-06-06

How To Use It

* This is not yet in the regular AthenaMT build

It usually gets built for one nightly a week

> | send out notices to interested parties

» you can tell which build it is by looking at the README file in the
root directory of the Gaudi build area

You can make your code work in all builds by protecting the
appropriate bits with the #ifdef REENTRANT_GAUDI macro

There's an example in AthExHive/HiveAlgR

Comments

* There's a Gaudi merge request (WIP) where the
design/implementation can be discussed:

» https://gitlab.cern.ch/gaudi/Gaudi/merge requests/177

https://gitlab.cern.ch/gaudi/Gaudi/merge_requests/177

