
Incidents in Multi-threaded environment

Sami Kama

Southern Methodist University

2016-06-06 Mon

Sami Kama (SMU) Incidents in Multi-threaded environment 2016-06-06 Mon 1 / 9

Existing Incidents

We have simple incidents that
are mostly fired outside
eventloop

I see https:
//indico.cern.ch/event/
472619/#day-2016-02-26

Usually used to setup or clean
containers or variables
In multi threaded environment
incident listeners have to be
context aware and thread safe
Decision was to move context
(incident) sensitive data to
services and let users of them
to poll the services with the
context

Incidents in R2E
BeginEvent
BeginInputFile
BeginOutputFile
BeginRun
EndEvent
EndInputFile
EndRun
FirstInputFile
LastInputFile
MetaDataStop
StoreCleared
TrigConf

Sami Kama (SMU) Incidents in Multi-threaded environment 2016-06-06 Mon 2 / 9

https://indico.cern.ch/event/472619/##day-2016-02-26
https://indico.cern.ch/event/472619/##day-2016-02-26
https://indico.cern.ch/event/472619/##day-2016-02-26

New Incidents

ELM

Event Loop Manager

IPA
Incident Processing Alg

Incident Svc

CAS1 CAS2
Context Aware Service

schedules incidents
BeginEvent etc

Schedules gets incidents

Calls listeners

Alg

Event
loop
starts

Alg AlgAlg

Query service with context

Alg

Alg

Query service with context

IPA

Call handlers

ELM

Event Loop Manager
schedules incidents

Incident Processor
Algorithm is scheduled
IPA gets incidents
and calls handlers
Event loop continues
Algorithms/Tools query
the services with context
Loop continues until the
end of the event

Sami Kama (SMU) Incidents in Multi-threaded environment 2016-06-06 Mon 3 / 9

New Incidents

ELM

Event Loop Manager

IPA
Incident Processing Alg

Incident Svc

CAS1 CAS2
Context Aware Service

schedules incidents
BeginEvent etc

Schedules gets incidents

Calls listeners

Alg

Event
loop
starts

Alg AlgAlg

Query service with context

Alg

Alg

Query service with context

IPA

Call handlers

ELM

Event Loop Manager
schedules incidents
Incident Processor
Algorithm is scheduled

IPA gets incidents
and calls handlers
Event loop continues
Algorithms/Tools query
the services with context
Loop continues until the
end of the event

Sami Kama (SMU) Incidents in Multi-threaded environment 2016-06-06 Mon 3 / 9

New Incidents

ELM

Event Loop Manager

IPA
Incident Processing Alg

Incident Svc

CAS1 CAS2
Context Aware Service

schedules incidents
BeginEvent etc

Schedules gets incidents

Calls listeners

Alg

Event
loop
starts

Alg AlgAlg

Query service with context

Alg

Alg

Query service with context

IPA

Call handlers

ELM

Event Loop Manager
schedules incidents
Incident Processor
Algorithm is scheduled
IPA gets incidents

and calls handlers
Event loop continues
Algorithms/Tools query
the services with context
Loop continues until the
end of the event

Sami Kama (SMU) Incidents in Multi-threaded environment 2016-06-06 Mon 3 / 9

New Incidents

ELM

Event Loop Manager

IPA
Incident Processing Alg

Incident Svc

CAS1 CAS2
Context Aware Service

schedules incidents
BeginEvent etc

Schedules gets incidents

Calls listeners

Alg

Event
loop
starts

Alg AlgAlg

Query service with context

Alg

Alg

Query service with context

IPA

Call handlers

ELM

Event Loop Manager
schedules incidents
Incident Processor
Algorithm is scheduled
IPA gets incidents
and calls handlers

Event loop continues
Algorithms/Tools query
the services with context
Loop continues until the
end of the event

Sami Kama (SMU) Incidents in Multi-threaded environment 2016-06-06 Mon 3 / 9

New Incidents

ELM

Event Loop Manager

IPA
Incident Processing Alg

Incident Svc

CAS1 CAS2
Context Aware Service

schedules incidents
BeginEvent etc

Schedules gets incidents

Calls listeners

Alg

Event
loop
starts

Alg AlgAlg

Query service with context

Alg

Alg

Query service with context

IPA

Call handlers

ELM

Event Loop Manager
schedules incidents
Incident Processor
Algorithm is scheduled
IPA gets incidents
and calls handlers
Event loop continues

Algorithms/Tools query
the services with context
Loop continues until the
end of the event

Sami Kama (SMU) Incidents in Multi-threaded environment 2016-06-06 Mon 3 / 9

New Incidents

ELM

Event Loop Manager

IPA
Incident Processing Alg

Incident Svc

CAS1 CAS2
Context Aware Service

schedules incidents
BeginEvent etc

Schedules gets incidents

Calls listeners

Alg

Event
loop
starts

Alg AlgAlg

Query service with context

Alg

Alg

Query service with context

IPA

Call handlers

ELM

Event Loop Manager
schedules incidents
Incident Processor
Algorithm is scheduled
IPA gets incidents
and calls handlers
Event loop continues
Algorithms/Tools query
the services with context

Loop continues until the
end of the event

Sami Kama (SMU) Incidents in Multi-threaded environment 2016-06-06 Mon 3 / 9

New Incidents

ELM

Event Loop Manager

IPA
Incident Processing Alg

Incident Svc

CAS1 CAS2
Context Aware Service

schedules incidents
BeginEvent etc

Schedules gets incidents

Calls listeners

Alg

Event
loop
starts

Alg AlgAlg

Query service with context

Alg

Alg

Query service with context

IPA

Call handlers

ELM

Event Loop Manager
schedules incidents
Incident Processor
Algorithm is scheduled
IPA gets incidents
and calls handlers
Event loop continues
Algorithms/Tools query
the services with context

Loop continues until the
end of the event

Sami Kama (SMU) Incidents in Multi-threaded environment 2016-06-06 Mon 3 / 9

New Incidents

ELM

Event Loop Manager

IPA
Incident Processing Alg

Incident Svc

CAS1 CAS2
Context Aware Service

schedules incidents
BeginEvent etc

Schedules gets incidents

Calls listeners

Alg

Event
loop
starts

Alg AlgAlg

Query service with context

Alg

Alg

Query service with context

IPA

Call handlers

ELM

Event Loop Manager
schedules incidents
Incident Processor
Algorithm is scheduled
IPA gets incidents
and calls handlers
Event loop continues
Algorithms/Tools query
the services with context

Loop continues until the
end of the event

Sami Kama (SMU) Incidents in Multi-threaded environment 2016-06-06 Mon 3 / 9

New Incidents

ELM

Event Loop Manager

IPA
Incident Processing Alg

Incident Svc

CAS1 CAS2
Context Aware Service

schedules incidents
BeginEvent etc

Schedules gets incidents

Calls listeners

Alg

Event
loop
starts

Alg AlgAlg

Query service with context

Alg

Alg

Query service with context

IPA

Call handlers

ELM

Event Loop Manager
schedules incidents
Incident Processor
Algorithm is scheduled
IPA gets incidents
and calls handlers
Event loop continues
Algorithms/Tools query
the services with context
Loop continues until the
end of the event

Sami Kama (SMU) Incidents in Multi-threaded environment 2016-06-06 Mon 3 / 9

Changes to IncidentSvc

Incidents are asynchronous so incidents need to be stored until consumed.

1 fireIncident(std::unique_ptr<Incident> inc);

New fireIncident method causes IncidentSvc to schedule incident, otherwise
old serial behavior is kept

Sami Kama (SMU) Incidents in Multi-threaded environment 2016-06-06 Mon 4 / 9

Example Service
Incident listeners become services, or at least reentrant.

Example
1 class IncidentAsyncTestSvc: public extends<Service,
2 IIncidentListener,
3 IIncidentAsyncTestSvc> {
4 public:
5 IncidentAsyncTestSvc(const std::string& name, ISvcLocator* svcloc);
6 virtual ~IncidentAsyncTestSvc();
7 StatusCode initialize() override;
8 StatusCode finalize() override;
9 // Handle callback

10 virtual void handle(const Incident& incident) final;
11 //real users query service to get the data
12 virtual void getData(uint64_t* data,EventContext* ctx=0) const final override;
13 private:
14 std::string m_name;
15 uint64_t m_fileOffset;
16 uint64_t m_eventMultiplier;
17 long m_prio;
18 StringArrayProperty m_incidentNames;
19 SmartIF<IMessageSvc> m_msgSvc;
20 SmartIF<IIncidentSvc> m_incSvc;
21 tbb::concurrent_unordered_map<EventContext,uint64_t,
22 EventContextHash,EventContextHash> m_ctxData;
23 std::mutex m_eraseMutex;
24 }

Sami Kama (SMU) Incidents in Multi-threaded environment 2016-06-06 Mon 5 / 9

Example Service 2

Handler implementation
1 void IncidentAsyncTestSvc::handle(const Incident &incident) {
2 MsgStream log(m_msgSvc, m_name);
3 if(incident.type()==IncidentType::BeginEvent){
4 //consume incident
5 auto res=m_ctxData.insert(std::make_pair(incident.context(),
6 incident.context().evt()*m_eventMultiplier+m_fileOffset));
7 if(!res.second){
8 log << MSG::WARNING << m_name<<" Context already exists for ’" << incident.type()
9 << "’ event="<<incident.context().evt() << endmsg;

10 }
11 }else if(incident.type()==IncidentType::EndEvent){
12 {
13 //release resources
14 std::unique_lock<decltype(m_eraseMutex)>(m_eraseMutex);
15 auto res=m_ctxData.unsafe_erase(incident.context());
16 if(res==0){
17 log << MSG::WARNING << m_name<<" Context is missing for ’" << incident.type()
18 << "’ event="<<incident.context().evt() << endmsg;
19 }
20 }
21 log << MSG::INFO <<m_name<< " Cleaned up context store for event =" <<incident.context().evt()
22 << " for incident=’"<<incident.type() <<"’"<<endmsg;
23 }
24 log << MSG::INFO << m_name<<" Handling incident ’" << incident.type()
25 << "’ at ctx="<<incident.context() << endmsg;
26 }

Sami Kama (SMU) Incidents in Multi-threaded environment 2016-06-06 Mon 6 / 9

Example Service 3

Service implementation
1 void IncidentAsyncTestSvc::getData(uint64_t* data,EventContext* ctx)const {
2 MsgStream log(m_msgSvc, m_name);
3 log<<MSG::DEBUG<<"Asked for data with context "<<*ctx<<endmsg;
4 if(ctx){
5 auto cit=m_ctxData.find(*ctx);
6 if(cit==m_ctxData.end()){
7 log<<MSG::FATAL<<" data for event "<<ctx->evt()
8 <<" is not initialized yet!. This shouldn’t happen!"<<endmsg;
9 return;

10 }
11 *data=cit->second;
12 }else{
13 const auto& ct=Gaudi::Hive::currentContext();
14 auto cit=m_ctxData.find(ct);
15 if(cit==m_ctxData.end()){
16 log<<MSG::FATAL<<" data for event "<<ct.evt()
17 <<" is not initialized yet!. This shouldn’t happen!"<<endmsg;
18 return;
19 }
20 *data=cit->second;
21 }
22 }

Sami Kama (SMU) Incidents in Multi-threaded environment 2016-06-06 Mon 7 / 9

Consumer algorithm

Simple Example
1 StatusCode IncidentAsyncTestAlg::execute() {
2 uint64_t data=0;
3 MsgStream logstream(msgSvc(), name());
4 for (auto & inputHandle: m_inputObjHandles){
5 if(!inputHandle->isValid())
6 continue;
7
8 DataObject* obj = nullptr;
9 obj = inputHandle->get();

10 if (obj == nullptr)
11 logstream << MSG::ERROR << "A read object was a null pointer." << endmsg;
12 }
13 m_service->getData(&data);
14 for (auto & outputHandle: m_outputObjHandles){
15 if(!outputHandle->isValid())
16 continue;
17 outputHandle->put(new DataObject());
18 }
19 info() << "Read data "<<data << endmsg;
20 return StatusCode::SUCCESS;
21 }

Sami Kama (SMU) Incidents in Multi-threaded environment 2016-06-06 Mon 8 / 9

Migration Steps

We should convert listeners to services
Heavyweight incidents should be converted to algorithms
Consumers of incident information should be made contex aware

Sami Kama (SMU) Incidents in Multi-threaded environment 2016-06-06 Mon 9 / 9

