Accessing Conditions Data
in AthenaMT

Charles Leggett
June 6 2016

Glasgow TIM

>
A
rrrrrrr ""|

oo Conditions: The Problem

« Conditions objects fall into 2 categories
> "raw" . what's read from the DB

» "calibrated" : what's created after a IOVSvc callback function is
executed

 usually stored in as an AlgTool's data member, and accessed via Tool
interface

« Managed by IOVSvc, which updates/resets Handles as IOV boundaries are
reached, and also triggers callback function

* The current conditions access pattern fails when several
events are executed simultaneously

» events can straddle IOV boundaries - which one is used?
» callback functions are not thread safe: data often cached locally

* We need a way to:

> manage multiple simultaneous copies of conditions data for
different IOVs

> make sure all callback functions are thread safe, and update their
information for the correct event

. Leggett 2016-06-06

il Conditions Data Structure

BERKELEY LAB

« Conditions objects moved to a ConditionStore
> instance of StoreGate
» accessed via ConditionsHandle

« Several instances of any Conditions data object will be kept in
the ConditionStore, indexed by IOV

» ConditionStore objects are actually containers

> will need a garbage collection facility, to ensure that the
ConditionStore does not grow too large

« Callback functions replaced with Algorithms, scheduled by
framework

> Conditions Algs declare their data dependencies like any other Alg
* |Inputs, if they depend on data in the EventStore, or other CS data
« Outputs, for the data they put into the CS
» done automatically via Handle usage

>
A
rrrrrrr r1

i ConditionStore

« Store of Containers of Conditions objects

> one container element per range of validity (IOV)
« 1OV can be time based, or Run/Event or lumi/Event

» keyed like any object in event store

CondCont<type_W>
key: W1

I0V1.1 : obj_wi
I0V1.2 : obj_w2
I0V1.3 : obj_w3

CondCont<type_X>
key: X1

I0v2.1 : obj_x1
I0vV2.2 : obj_x2
I0v2.3 : obj_x3

CondCont<type_Y>
key: Y1

I0v3.1 : obj_y1
I10vV3.2 : obj_y2
I0v3.3 : obj_y3

C. Leggett 2016-06-06

>
A
rrrrrrr ""|

i ConditionHandles

al a2

[Alg B J [Alg C ‘J\
In: al In: a2, xi
out: out: ReadCondHandle

(t in IOV2)

e C. Leggett 2016-06-06

i ConditionHandles

CondDbSvc

WriteCondHandle
[Alg A J [I0V2]

z1

[Ccl)ndAlg_X regHandle(x1)-
n:
Out: x1 J

a1l a2 i ConditionStore
x1

x1 A
x1[IOV1] | y1[I0V1]
2x1[I0V2] | y1[I0V2]
x1[I0V3] | y1[I0V3]
y1[I0V4]

) [
In: a1 In: a2, x1
out : out: ReadCondHandle

(t in IOV2)

G C. Leggett 2016-06-06

oo Client Use of ReadCondHandle

fglass CaloLocalHadCoeff : public AthAlgorithm {
private:
SG: :ReadCondHandleKey<CaloLocalHadCoeff> m_rchk

}

CaloHadCoefTestAlg: :CaloHadCoefTestAlg (const std::string& name, ISvclLocator* pSL) :
: :AthAlgorithm(name, pL) , m_rchk("EMFracClassify") {
declareProperty("KEY_RCH" ,m_rchk);

}

StatusCode CaloHadCoefTestAlg::initialize() {
1f(m rchk.initialize() .1isFailure()) {

ATH_MSG_ERROR("unable to initialize ReadCondHandleKey " << m_rchk.fullKey());

return StatusCode: : FAILURE;

+ created using current time from
return StatusCode: : SUCCESS; Gaudi::Hive::currentContext(), or
} explicitly with extra parameter

StatusCode CaloHadCoefTestAlg: :execute() {
SG: :ReadCondHandle<CaloLocalHadCoeff> rch(m rchk);
const CaloLocalHadCoeff* cdo{nullptr};
cdo = *rch; =

can also do explicit

if (cdo != nullptr) { tri EventIDBase) t t
ATH MSG_INFO("had coeff val: " << cdo->val()); " C;T:J/Z(a\;egiﬁereﬁ)ﬁr:ege

S

C. Leggett 2016-06-06

Functionality

 During initialize, CondAlgs register their WriteCondHandles
with the CondSvc

[StatusCode ICondSvc: :regHandle(IAlgorithm* alg, J

const Gaudi: :DataHandle& id,
const std::string& dBkey);

* At the start of each event, the ForwardScheduler will:
> query CondSvc to determine which CondObijlDs are valid/invalid

> query ExecutionFlowGraph to find producer CondAlg of these
objects

« we could build this locally once since it's fixed, but the EFG is pretty
efficient

> if any objects produced by a CondAlg is invalid, schedule the Alg
to execute, otherwise mark it as already executed

> update data catalog with all valid CondObjIDs

* Only CondAlgs that produce new data (ie, the CondObj has
entered a new validity range) will execute

-1 Conditions Data With No Callback

BERKELEY LAB

 Significant fraction of Conditions data has no associated
callback function ("raw")

> big overhead if we have to create a new CondAlg for each one!

» want to just read them in, provide WriteCondHandles for them (to
satisfy downstream data dependencies), update the handle when
it gets into a new validity range

e generic alg IOVSvc/CondInputLoader

» supply with list of db items (folders) to be loaded, just like with the
|IOVDbSvc

-
from IOVSvc.IOVSvcConf import CondInputLoader
topSequence += CondInputLoader("CondInputLoader")

topSequence.CondInputLoader.load += [
('AthenaAttributelList', '/path/to/DB/folder1'),
('AthenaAttributelList', '/path/to/DB/folder2'),
('CaloLocalHadCoeff', '/CALO/HadCalib/CaloEmFrac')]

gett 2016-06-06

Database Issues

« |0OVDb folder name and StoreGate key can be different. Which
to specify in CondHandle configuration?

> once the data has been read in from the db, the folder name is no
longer needed, but clients need the SGkey to access the data

» SGkey is actually encoded into the db

» specify the folder name in the configuration, set the appropriate
the SGKey once the db is read

BERKELEY LAB

CondIinputLoader Functionality

[

CondInputLoader::initialize() {

// do translation of FolderName to SGKey

// set the Write dependencies via linking Property "Load" to ExtraOutputDeps()

// register Write DataHandles with CondSvc
for (auto & : m load) {
if (e.key() = "") {
sc = StatusCode: : FAILURE;
ATH_MSG_ERROR(" ERROR: empty key is not allowed!);
} else {
Gaudi: :DataHandle dh(e, Gaudi::DataHandle: :Writer, this);
if (m_condSvc->regHandle(this, dh, e.key()).isFailure()) {
ATH_MSG_ERROR("Unable to register WriteCondHandle " << dh.fullKey());
sc = StatusCode: :FAILURE;
¥
// remove proxy reset control from old IOVSvc
m_IOVSvc->ignoreProxy (dh.fullkey().clid(), e.key());

C. Leggett

2016-06-06

BERKELEY LAB

CondIinputLoader Functionality

[

CondInputLoader: :execute() {
for (auto &obj: m_load) {

CondContBase* ccb(0);
if (! m_condStore->retrieve(ccb, obj.key()).1isSuccess()) {
ATH_MSG_ERROR("unable to get CondContBase* for " << obj
<< " from ConditionStore");
continue;

}

if (! ccb->valid(now)) {
if (m_IOVSvc->createCondObj(ccb, obj, now).isFailure()) {
std: :string dbKey = m_folderKeyMap[obj.key()];
ATH_MSG_ERROR("unable to create Cond object for " << obj << " dbKey: "
<< dbKey);
return StatusCode: : FAILURE;
} else {
ATH_MSG_INFO(" CondObj " << obj << " 1s still valid at " << now);

+
evtStore()->addedNewTransObject (obj.clid(), obj.key());

C. Leggett

2016-06-06

el IOVSvc::createCondObj

/iOVSvc::createCondObj(CbndContBase* ccb, const DataObjID& id,
const EventIDBase& now) {
if (getRangeFromDB(id.clid(), id.key(), t_now, range, tag, ioa).isFailure()) {
ATH_MSG_ERROR("unable to get range from db for "
<< id.clid() << " " << id.key());
return StatusCode: :FAILURE;

}

DataProxy *dp = ccb->proxy();
DataObject* dobj(0);
void* v(0);
if (dp->loader()->createObj(ioa, dobj).isFailure()) {
ATH_MSG_ERROR(" could not create a new DataObject ");
return StatusCode: : FAILURE;
} else {
v = SG::Storable cast(dobj, id.clid());
¥
EventIDRange r2(EventIDBase(range.start().run(), range.start().event()),
EventIDBase(range.stop().run(), range.stop().event())),

if (!ccb->insert(r2, v)) {
ATH_MSG_ERROR("unable to insert Object at " << v << " into CondCont "
<< ccb->1d() << " for range " << r2);
return StatusCode: : FAILURE;

}
return StatusCode: : SUCCESS;

@ C. Leggett

2016-06-06

What's Left To Do

* Clean up and merge CondSvc into IOVSvc

» CondSvc has a bunch of unnecessary routines to manage an
ASCII test database

» |[OVSvc will also need to inherit from [ICondSvc, as that lives in
GaudiKernel

Make new scheme with CondAlgs work in serial Athena

Develop migration plan for clients

Improve validity checking in Scheduler

» all the condition information can be attached to the Data and
Control nodes in the Event Flow Graph.

» validity checking and CondAlg scheduling is then done on
demand

