
Migration of Conditions Clients
to AthenaMT

First experience

Vakho Tsulaia (LBNL)

ATLAS Software TIM, Glasgow
June 6, 2016

• Migrate few conditions clients from CaloHiveEx/CaloHiveExOpts.py
to the new Conditions Data Access infrastructure

• Get first experience with migration of the client code

• Identify issues with the new system and provide feedback to the core
developers (Charles)

• Finally, come up with a list of instructions and recommendations for the
algorithmic code developers

➢ Yet to be done...

- 2 -

Purpose of this exercise

• CaloUtils/CaloLCClassificationTool
➢ Client of one conditions folder
➢ Registers callback for updating private data member:

➢ In the callback, just retrieves the object from the Detector Store and does
nothing else

• Actions required for this client:
1) Replace the old m_data data member with ReadCondHandleKey

2) Drop the callback function

3) Add the conditions DB folder to the CondInputLoader list of folders (job
options):

- 3 -

Trivial example

const DataHandle<CaloLocalHadCoeff> m_data;

sc = detStore()->retrieve(m_data,m_key);

SG::ReadCondHandleKey<CaloLocalHadCoeff> m_rchk;

topSequence.CondInputLoader.Load +=
[('CaloLocalHadCoeff','/CALO/HadCalibration2/CaloEMFrac')]

• CaloUtils/CaloLCWeightTool
➢ Client of one conditions folder
➢ Registers callback for updating private data member:

➢ In the callback, retrieves the object from the Detector Store …

➢ … and populates local cache (private data member)

• The existence of such local cache means
➢ We need to introduce a Conditions Algorithm
➢ This Conditions Algorithm will create a Conditions Object (corresponding to the

Tool's cache) and write it to the Conditions Store using a Write Conditions Handle

- 4 -

Not so trivial example

const DataHandle<CaloLocalHadCoeff> m_data;

sc = detStore()->retrieve(m_data,m_key);

std::vector<int> m_isampmap;

• Actions required for this client. Introduce two new classes:
1) New Conditions Data Object

2) New Conditions Algorithm
➢ Transform the callback function of CaloLCWeightTool into execute()

of this algorithm
➢ The execute() needs to create new instance of CaloLCWeightObj and

store it into Conditions Container (using Write Conditions Handle)

- 5 -

Not so trivial example (contd.)

class CaloLCWeightObj {
 …
 private:
 std::vector<int> m_indices;
};

• Actions required for this client. Changes in CaloLCWeightTool
1) Replace the old m_data data member with ReadCondHandleKey

2) Replace the old m_isampmap cache with RedCondHandleKey

3) Drop the callback funstion

● Finally, add the conditions DB folder to the CondInputLoader list of folders
(job options):

- 6 -

Not so trivial example (contd.)

SG::ReadCondHandleKey<CaloLocalHadCoeff> m_rchkCaloLocalHadCoeff;

topSequence.CondInputLoader.Load +=
[('CaloLocalHadCoeff',
'/CALO/HadCalibration2/H1ClusterCellWeights')]

SG::ReadCondHandleKey<CaloLCWeightObj> m_rchkCaloLCWeightObj;

• CaloTools/CaloNoiseToolDB
➢ Client of 4 conditions folders
➢ Registers 2 callback functions

➔ First callback for 1 conditions folder
➔ Second callback for 3 conditions folders

➢ In the callbacks
➔ Updates several private data members
➔ Sets a flag for updating local cache

➢ The flag is checked at the beginning of several public methods of the tool. If the
flag has been set then the cache update is triggered

- 7 -

Complex example

• Like in the previous (“not so trivial”) example, here we also need to introduce
new Conditions Algorithm and Conditions Data Object

● But, due to the complexity of the code, it was not so obvious how to design the
Conditions Data Object and how to implement execute() of the Conditions
Algorithm

● For now implemented several not-so-clean shortcuts just to get the example
going

➢ For the sake of proof of principle …

● Clean implementation requires expertise of the developer of this particular Tool,
or at least somebody who has a good knowledge of what this code is doing

- 8 -

Complex example (contd.)

● After migrating aforementioned clients the CaloHiveExOpts.py example
happily runs in AthenaMT in 20.8.X-VAL nightlies with --threads=1

➢ No validation of the results has been done so far, but at least there are no crashes

● Next steps
➢ Run tests with more that one thread
➢ Test the new conditions infrastructure in serial Athena
● Test the new conditions infrastructure with jobs in which conditions change during

event loop (this is not the case for CaloHiveExOpts.py)

● Write code migration instructions for the developers of conditions clients

● At some point we need to put everything into dev/devval
➢ And also back-port to stable releases, in order to avoid an avalanche of branch tags

in client packages...

- 9 -

Status, next steps

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9

