
Jun 6, 2016

G4AtlasMT Updates

Steve Farrell

ATLAS Software TIM at Glasgow

Introduction

• Previous report from November TIM:
• https://indico.cern.ch/event/395887/contributions/947413/attachments/

1185054/1717711/Farrell_G4Hive_v3.pdf
• Good progress has been made on multi-threaded G4Atlas, the “old-style” ATLAS simulation

• Nearly a “complete”, “realistic” simulation configuration in place
• Updated performance measurements
• ISF-MT not yet heavily pursued, but still progressing (partially indirectly)

• Still some open issues
• Few blockers
• Non-essential missing features
• Design choices that could be simplified

• Bonus: first tests with KNL architecture!!
2

Geant4

Gaudi

G4Atlas

Athena FADS Geant4MT

GaudiHive

G4AtlasMT

AthenaMT

(aka G4Hive)

https://indico.cern.ch/event/395887/contributions/947413/attachments/1185054/1717711/Farrell_G4Hive_v3.pdf

Overview of progress

• Geometry and physics lists
• Tool-based design from the G4Atlas infrastructure migration seems to be

working well in MT
• Sensitive detectors

• Nearly all done and working
• LAr SDs are not yet working, but making progress
• Design is still holding up

• User actions
• Migration ~done, but not all work in MT
• Design works, but migration has taught us we may want to simplify some areas

• Truth code: now working in MT!
• Magnetic field: now working in MT!
• Fast simulations

• Good progress made on frozen showers

3

Many successes!

Review of algorithms

• We now have four algorithms
• BeamEffectsAlg applies beam-related smearing to the gen event and saves the

new collection as input to G4AtlasAlg.
• We still run mostly event-level parallelism

• All the simulation work is done in G4AtlasAlg, which we clone for each thread
• The new BeamEffectsAlg gets cloned as well, but it must run before G4AtlasAlg
• I/O algs are not cloned

• Re-entrancy?
• Not worth it because of G4 design/restrictions

4

G4InputLoader G4AtlasAlg 1

G4InputLoader G4AtlasAlg 2

StreamHITS

StreamHITS

G4InputLoader G4AtlasAlg 3

G4InputLoaderThread 1

Thread 2

Thread 3

Just a cartoon. Not to scale.

BeamEffectsAlg

BeamEffectsAlg

BeamEffectsAlg

LAr sensitive detectors

• LAr SDs collaborate on hit collections. In the new SD infrastructure, initial
design was not thread safe.
• WriteHandle lives in SD tool, which attempts to collect hits from all SDs
• But SD tools are “shared” in MT (they hang off a service)
• Pointers to SDs were not thread-local

• My proposed solution: use an SD wrapper which is thread-local and holds the
WriteHandle as well as the actual SDs
• This SD functions as the single SD of the SD tool, restoring consistency

with the SD tool pattern for MT
• Not the only solution, but it does work and produces consistent outputs

• This implementation is in branch tags and ready for merging, but thread safety
is waiting on a migration of the LAr calculators
• See https://its.cern.ch/jira/browse/ATLASSIM-2606
• See https://its.cern.ch/jira/browse/ATLASSIM-2290

5

https://its.cern.ch/jira/browse/ATLASSIM-2606
https://its.cern.ch/jira/browse/ATLASSIM-2290

Digression on teaching

• I get the sense that many (probably most) developers are still unclear about
the essential concepts of AthenaMT, despite the amount of time we spend
talking about them
• cloning of algorithms
• public/private tools in MT
• levels of thread safety and the requirements for components

• This makes design decisions difficult
• Every design decision is complicated now by these concepts
• Understanding is really essential

• I suspect this is because the comprehension doesn’t sink in until you actually
get your hands dirty
• Maybe we should put together a small tutorial homework that demonstrates

the concepts

6

Huh??

User actions

• I think all actions are migrated to the new infrastructure, though a few are not
really thread safe and will not allow to run in MT
• e.g. actions which write out custom ROOT files or use THistSvc

• …which reminds me: can we have an implementation of THistSvc which
manages context-local histograms automatically?
• user code is otherwise fairly complicated; e.g., see: http://acode-

browser.usatlas.bnl.gov/lxr/source/atlas/Simulation/G4Utilities/
G4UserActions/src/LengthIntegrator.cxx?v=head#0464

• We’ve been thinking about ways to simplify the design
• Reduce tool interfaces in exchange for more dependencies
• Inheriting from G4 base classes instead of custom interfaces

• I pushed a thread-termination update into Gaudi
• We can now have end-run actions!

• See https://its.cern.ch/jira/browse/ATLASSIM-2226

7

http://acode-browser.usatlas.bnl.gov/lxr/source/atlas/Simulation/G4Utilities/G4UserActions/src/LengthIntegrator.cxx?v=head#0464
https://its.cern.ch/jira/browse/ATLASSIM-2226

Truth code

• The G4Atlas code was pretty old and not very Athena-centric
• Truth strategy objects hang off a global singleton TruthStrategyManager
• Static state in the AtlasTrajectory, elsewhere
• Global storage of current list of secondary particles

• Rather than re-write everything (which we’ll probably do later), I actually managed to get
it working multi-threaded with some “minor” refactoring
• Cleanup of statics
• Moved some TruthStrategyManager code into stateless standalone functions:

• See MCTruthBase/TruthStrategyUtils.h
• Using G4Step method to query current list of secondaries

• Thanks to an upcoming patch requested in Geant4
• The new implementation works and is validated!

• See https://its.cern.ch/jira/browse/ATLASSIM-2409
• Longer term plans involve merging with the ISF solution in a thread-safe way

• Some investigation has already been done into this, but it will require some refactoring
• Real progress was made at sim workshop last week

8

http://acode-browser.usatlas.bnl.gov/lxr/source/atlas/Simulation/G4Sim/MCTruthBase/MCTruthBase/TruthStrategyUtils.h?v=head
https://its.cern.ch/jira/browse/ATLASSIM-2409

Magnetic field

• G4Atlas infrastructure migration resulted in new tools/services for G4
fields
• G4MagField services create G4 fields
• G4FieldManager tools create field managers with steppers and fields
• DetectorGeometrySvc owns the field mgr tools and invokes the setups

• After just a little refactoring, it works now in MT!
• Finally after a ~year I can confirm the mag field svc is thread safe

• See https://its.cern.ch/jira/browse/ATLASSIM-2373
• See https://its.cern.ch/jira/browse/ATLASSIM-2793

9

This reminds me: it’s difficult/impossible to prove thread-
safety in components. We should provide some “simple”

Athena setup for stress-testing thread safety of components

https://its.cern.ch/jira/browse/ATLASSIM-2373
https://its.cern.ch/jira/browse/ATLASSIM-2793

Fast simulations

• Frozen showers
• Necessary to be considered a “complete” simulation application
• Good progress made at the Simulation Workshop at Cambridge last week
• Turned out to be easier than expected
• Follows a sensitive detector pattern, with a frozen shower service that was

made thread-safe
• Basic implementation is done, but currently debugging some data-race

related crashes (e.g. RDBAccessSvc)
• AF2

• Next most common
• No progress yet

• FATRAS
• Least commonly used
• Larger scale problem, not sure how to proceed yet

10

MT in the ISF

• Migration of core ISF code to AthenaMT started at the Simulation Workshop
• Data-flow refactoring

• Previously, collections were created and stored within services
• Moving event store interactions instead into main ISF SimKernel

algorithm
• Containers/elements now passed into the services/tools for processing

• Hits collection merging
• Multiple simulators were writing to same hits collection in StoreGate

• Common pattern in ATLAS code
• Now, simulators write separate collections which get merged at the end

of the event
• This design choice appears in many places. Not clear without spending

considerable effort which solution(s) are the best

11

Other open issues

• There may be some non-essential straggler pieces in the simulation
• e.g., VertexRangeChecker is a FADS thing
• We have a non-FADS version which we can maybe adopt

• DecisionSvc has been an issue for a while
• Used for aborting/skipping simulation events
• Grabs decision algorithms once in the job, and then queries them

when queried for a decision by the output stream
• Obviously this completely falls over in multi-threading!
• This thing will need a re-write. Any thoughts?

12

Short list :D

Performance measurements

• Now that the application is realistic, we can really start to trust the
performance measurements
• Previous results are from last year. Time to redo them!

• What kind of data do we want?
• Throughput scaling
• Memory scaling
• Timing information at algorithm granularity

• Other stuff
• Compare MP and MT concurrency

• Hardware to use
• 16-core machine at CERN
• NERSC’s Cori phase 1
• Intel Knight’s Landing early access machines

13

First checks, single-mu sample

• Terrible throughput!
• Uh-oh, what did I do??

14

Single-muon sample results (no calo, magfield)

• Looking more closely, we can see what’s happening

• Apparently, few events are taking up too much time at the end of the loop
• Whew, so just insufficient stats or random hiccups

15

Visualizing algorithm timeline

• Using ipython + matplotlib, can interactively look at what’s really happening in
the event loop => very useful!

16

Full event loop

Mid event loop

Begin event loop

End event loop

Still the single-mu sample here

TTBar results (with calo, mag-field, no LAr SDs)

• Scaling results are quite good
• Throughput shows nearly perfect scaling up to the number of cores

• Some degradation at 16 is probably expected due to interference from monitoring
• Only 50 MB per event => should be good for KNL

• ~5 GB at 72 threads
• ~9 GB at 144 threads
• ~16 GB at 288 threads

17

Linear approximation:
1.63 GB + 48.67 MB/thread

16 physical cores

NOTE: LAr SDs will
affect memory footprint

TTBar sample results

• Initialization and
finalization times
• Not very surprising,

besides a few funny
fluctuations

• Memory vs time
• Not yet plateauing…?

18

TTBar sample algorithm timings

• Slowdown in hyper-threading
seems to be almost entirely in
the algorithm executions
• Scheduler not getting

overwhelmed

19

TTBar sample timeline

• Very red :)
• You can find my notebook here:

• https://github.com/sparticlesteve/g4hive-analysis/blob/master/
G4HivePerfAnalysis.ipynb

20

https://github.com/sparticlesteve/g4hive-analysis/blob/master/G4HivePerfAnalysis.ipynb

Knights landing

• One of our major motivating targets is NERSC’s Cori Phase II, which will be
composed of Intel KNL Xeon Phi machines
• 72 cores per chip
• ~100 GB of DDR, 16 GB of high-bandwidth MCDRAM

• I have early access to a KNL cluster with Intel
• Will be used for extensive testing of G4AtlasMT

• The good news
• Athena and G4AtlasMT run successfully!

• Pacman kit installed on a “normal” machine; copied to KNL
• Practically runs out-of-the-box; x86 compatibility confirmed

• The bad news
• Processing is currently super slow

• ~25 min per TTBar event
• Seems mostly unaffected by usage of MCDRAM

• Oddly, pure-G4 app showed significant speedup with MCDRAM
• There’s probably a funny bottleneck => under investigation

21

Conclusions

• G4AtlasMT is finally at a stage where we can call it a nearly
complete simulation
• Definitely realistic

• Next development things to be done
• Continue progress on fast simulations
• Deep-dive into multi-threaded ISF

• Performance studies heavily underway
• Results look very nice so far (on traditional machines)
• Throughput and memory performance is good

• First tests on Knights Landing architecture!
• Something funny going on, though, which needs further

investigation

22

23

The end!

Multi-threading
IRL

• A “supercomputer on a chip”
• Lots of threads, wide vector registers, with

low power footprint
• Particularly suited to highly-parallel, CPU-

bound applications

• The Xeon Phi product line:

• Supercomputers:

Intel Many-Integrated-Core architecture

24

Knights Corner (KNC)
current generation

57-61 Pentium cores (~1GHz)
6-16 GB on-chip RAM

coprocessor only

Knights Landing (KNL)
coming soon

72 Airmont cores (3x faster)
8-16 GB MCDRAM
up to 384 GB RAM
host or coprocessor

Knights Hill (KNH)
maybe 2017

60-72 Silvermont cores
???

• Tianhe-2 @ NSCC-GZ
• Stampede @ TACC

• Cori @ NERSC
• Theta @ ANL

• Aurora @ ANL

