@

c E R N open |ab Intel Parallel Computing Centers

GeantV

ﬁennt ' 23

John Apostolakis (CERN) for the GeantV development team

G. Amadio (UNESP), A. Ananya (CERN), J. Apostolakis (CERN) , A. Arora (CERN), M. Bandieramonte
(CERN), A. Bhattacharyya (BARC), C. Bianchini (UNESP), R. Brun (CERN), P. Canal (FNAL), F. Carminati
(CERN), L. Duhem (intel), D. Elvira (FNAL), A. Gheata (CERN), M. Gheata (CERN), I. Goulas (CERN), F.
Hariri (CERN), R. lope (UNESP), S. Y. Jun (FNAL), G. Lima (FNAL), A. Mohanty (BARC), T.Nikitina (CERN),
M.Novak (CERN), W. Pokorski (CERN), A. Ribon (CERN), R. Sehgal (BARC), O. Shadura (CERN), S.
Vallecorsa (CERN), S. Wenzel (CERN), Y. Zhang (CERN)

HEP Software Foundation Workshop
LAL, May 2 — 4, 2016



Outline

0 GeantVectorized
O Challenges, ideas, goals

O Main components
O Geometry, physics, propagation in field, scheduler

O Development- different components in different stages

O Performance and benchmarks
O Vectorization: overheads vs. gains

O Geometry and physics performance: CPU and
acceleratorsbenchmarks

O Results on parts, simple setups and full detector



The challenge

Goal of improving performance by a factor
between 2.5 and 5 for large HEP detectors

Parts of transport of particles

* Navigating in complex geometries - millions
of volumes

* Interactions using physics models,
* Propagation in EM field

Strongly CPU-bound, but must also generate
user-determined output (hits & ‘truth’
information)

The LHC uses about 50% of its distributed
GRID power for detector simulation

http://atlas.ch



The ideas

Transport particles in groups (vectors) distance( double &); distance( vector_type &);
rather than one by one _
O Group particles by geometry Scalar interface /' Vector interface

volume or same physics

O No free lunch: data gathering
overheads < vector gains e

Backend::double_t
Dispatch SoA to functions with vector common_distance_function( Backend::double t input )
signatures ¢

/I Single kernel algorithm using Backend types
O Use backends to abstract }
interface: vector, scalar

O Use backends to insulate

technology/library: Ve, Cilk+, struct ScalarBackend struct VectorVcBackend
VecMic, ... { {
typedef double double _t; typedef Vc::double_v double_t;
. . typedef bool bool_t; typedef Vc::double_m bool_t;
Rede3|_gn the !lbrary anc_j workflow to static const bool IsScalar=true; static const boollsScalar=false;
target fine grain parallelism static const bool IsSIMD=false; static const bool IsSIMD=true;
- I Y
L CPU’ GPU’ Phl’ Atom’ I/l Functions operating with backend /I Functions operating with
O Aim for a 2.5x-5x faster code, types backend types

understand hard limits for more
code.compeng.uni-frankfurt.de/projects/vc




(Fast)Physics
Filters

Input queue

A
10° baskets/sec

Vector
stepper

Baskets
Step

sampling
Filter neutrals

(Field)

= Propagator
- Step limiter
< oot VecGeom

Scheduler

navigator Samp|er

Phys. Process
post-step

Simplified
geometry




Performance & Benchmarks

O Computing performance is a raison d’etre for GeantV

O Almost every component/class has a test and a benchmark for
scalar and vector performance

O Automated test, which must be run for each solid
O Individual physics model sampling methods

O Benchmarks for
O Navigation in simple and full detector geometries
O ‘Full’ simulation using all integrated components



Geometry solid performance

Geometry is 30-40% of the total
CPU time in Geant4

Vectorized geometry algorithms
to take maximum advantage of
SIMD

Benchmark each method
against implementations in
Root, Geant4 and USolids
library

Performance gains also in
scalar mode for some cases

Testing the same on GPU

Speedup vs Number of 16 1024 SIMD
particles particles particles max
Intel lvy-Bridge (AVX)

Intel Haswell (AVX2) 3 5 4
Intel Xeon Phi (AVX-512) 41 4.8 8

/ Overall performance for a simplified detector vs.
scalar ROOT/5.34.17

distFrominside
mothervolume

Trapezoid Benchnark - Vc Backend - Intel (R} Xeon Phi(TH)

vector flow

pick next B
daughter volume

transform
coordinates to
daughter frame

T /7 T_tvectorized}
T

distToOutside
daughtervol

update step +
SULIEER Vectorization performance for trapezoid shape
navigation (Xeon®Phi® COPRQ-7120 P)




Geometry performance on K20 GPU

Speedup for different navigation
methods of the box shape,
normalized to scalar CPU

O Scalar (specialized/unspecialized)

O Vector
O GPU (Kepler K20)
O ROOT

Data transfer in/out is
asynchronous
O Measured only the kernel

performance — relying on constant
throughput to hide transfer latency

Will eXﬁIore how to saturate the
die: either with large track
containers, running a single kernel,
or with smaller containers
dynamically scheduled.

Demonstrates that we can run the
same code on CPU/accelerators;
further optimization anticipated

10*

Inside

1 llllllli L IllllI.Ij Il llllll.Ii Illllllli L lllllll.i

3 ) 5
10 10 10 10\ racdd
containg

L lllllll.i L lllllllj L llllll.li 1 lllll.lli L Illllll.i

3 ) 5
10t 10 10 10\ racdd

10°*

distToln

L lllllll.i L IllIlI.Ij Il llllllli |1|m||i L lllllllj

3 0] 5
10 10 10 10\ padd

distToOut

L lllllll.i L Illllljj Il llllll.li |1|lu||i L Illllllj

3 0] 5
10 10 10 10\ radd

10

safetyToln

L lllllllj Il llllll.lj 1 llllllli Illllllli L Illllllj

3 0] L]
10 10 10 10\

safetyToOut

L Illlll.li L llllll.l]: Il llllllli lllllllli L lllllllj

3 0] 5
10 10 10 10\ it



Physics

Objective: a vector/accelerator friendly
re-write of physics code

O Alias sampling (first choice)
O Accept/reject (when needed)

|ldentify when

The initial vectorized gamma models
show performance gain already for small
vector size

O 1.2x-2.3xon SSE
O 1.8x—-2.3xon AVX
O 6x on Xeon Phi

Use profilers to identify hotspots (vtune,
Mac Instruments, igprof)

Speed-up on Xeon Phi(R) COPRQ-7120
forgCompton KN model compared to Geant4-

like implementation

7
6
Q.
2 5 == T(Geant4)/T(Scalar)
84
@ 3 == T(Geant4)/T(Vector)
2
1 W
0

Alias (E=2-20MeV)

35AVX

—— AVX (Intel Xeon E5 - 2620 @ 2.00 GHz)

—+ Klein-Nishina
—o— Bethe-Heitler......]

- Sauter-Gavrila
—— Moller-Bhabha...

—=— Seltzer-Berger

10 102 10°
Number of Tracks



Hits/digits 1/O

O "Data” mode O Integrating user code with a
O Send concurrently data to one highly concurrent framework
thread dealing with full 1/0O should not spoil performance
TransportTracks Threa GeantV concurrent /0
UserHit 8 data producer threads + 1 1/0 thread
IE]DDD GeantBlock o 4
DDD 3.5 .

GeantBlotkArray

(O @tput Thread \
OO0000]

@

2.5

=A=Data |/O (old)

Block size —o—Buffer I/O (new)

=

@
3
\ ROOT File /

Number of slots

relative time overhead wrt no I/0
N

o
O “Buffer’” mode

1 /
0.5
O Send concurrently local trees

connected to memory files produced by 0 . o 0 - o
workers to one thread dealing with
merging/write to disk Throughput [MB/s]




Basketizer performance

Rebasketizing
= Q;ﬁ;ﬁ%@;ﬂoﬁﬁe{ggg ways of scheduling 2x Intel(R) Xeon(R} CPU E5-2630 3@ 2.40CHz ..
O Changes in scheduler require non- L S S N TR SR R ¥ T
trivial effort (rewrite) IR A | : rts
E + & ° &
. . . A e Jat
O Seqerial still large, due to high re- BES *:H_ T
basketizing load (concurrent copying) o , 4 Lt A
5 1% | eI - {lock-free algorithm
O 9 1,'0 ) baskets/second on Intel Core Afgorithm Using spinlocks - (memory poling)
O Algorithm already lock free

—

O Rate will go down with addition of
physics processes

Schedulerl

O Ongoing work to improve scalability
O Re-use baskets for several steps
O Introduce NUMA awareness

O Clone scheduler in NUMA-aware
groups for use in many cores (e.g.
KNL)

Work stealing only
when needed

GeantPropagator (NUMA
manager)

Scheduler2

MPI manager

~




X-ray benchmark: Vector performance

O The X-Ray benchmark tests
geometry navigation in a
detector geometry

O In simple geometry example
(concentric tubes) emulates a

tracker detector - used for
Xeon®©Phi benchmark

O OMP parallelism + “basket”
model

O Gained up to 4.5 from
vectorization in basketized
mode

O Approaching the ideal case.

Speedup vs. scalar version

6

(&2

EN

w

n

-

o

e=t==Xeon(R) Phi Vector (ideal)

«=Xeon(R) Phi Vector (basket) " Xeon(R) 2x E5-2650 (basket)

Vectorization for X-Ray benchmark
A (OMP balanced affinity)

16 cores/Xeor

61 cores/phi

o

100 150 200 250 300
#threads

3

5|

Scalar case: Simple loop over pixels

Ideal vectorization case: Fill vectors
with N times the same X-ray

Realistic (basket) case: Group
baskets per geometry volume



Profiling for the X-Ray benchmark

) alleco/newDemo - Intel VTune Amplifier (on oplamico3)

i &2 b5 OSE @ weiome

® Advanced Hotspots Hotspo g Intel Vune Arm

dovn Tree| | B Pltform

Grouping: | Function  Call Stack o [t [a] (5] | oata of meerest (cpu wevrics
e | viewing 10130 selected st
- [isnmiss oo
Function/ Call Stack Effective Time by Utilization Spin Time

{@1de [ Poor ] Ok [ideal §Over imbal..| oc.. o | scissimpiemacke..ort - [Urknown]

Stepper:BasketTansport 2510275 o 05 | || scassimpleTiack..omn} {Unknown]

o5 os | || scassimplemack..ounlunknown]

(nts1z, o5 os |4 scassimpieTack..ownl (unknown]

. . . . Stepper: Tansportrask 0 05 || scrssimpleTiack..ownl Unknown]
(ntj512, 05051 tibiomps.sollOp...nown]:{Unknown]

ood vectorization intensi

] o Zz [ tiiomps soffun..ownkunknown)

libpthvead-2.14...nown]{Unknawn]
0o | | rioc214 1501 knownktunknown

thread activity and core
usage for the X-Ray
basketized benchmarkona == ——

22522288828 %%8

Ruler Area

N 05 T 5 % % A B % £ S P B2
OWP Master Trre T T T i i N Bl O R
eon I core TEEans = R
OMP Worker Threa. [ [ W [tea v
0P Worker Threa, n_| 8 Running
OP Worker Threa..| W — PAcontext sui
- % OvpviokerThves... Creen.
|£ lomp Worker Threa [ — D synchr.
" oporkerThres... 1 (B GuscrTine
O Worker Threa..| [ B Guwspnond.
(OMP Worker Threa, [ Fyid [ M| OHadvare..
OMP Worker Threa, T B @cPu Time
O Worker Threa..| spin and Overhead Time: Dl U Time
VMP Werker Thean - L% = M Spinand...
PuTime
O The per formance tools gave 2| ng: [ Fucion ol ace
Nofiters are appiicd. [l any Process v
Cache Usage Vectorization Usage
. . Function / Call Stack = | — 2 |
us good insight on the curren et [ oo
bLay (i 4.8. 64.071 15000 6.164  32.143
bLay i (i 53. 83.100 11421 6.889  43.400
e r'I O r'r r la n Ce Of G ea ntV 3 i (b 46. 238.012 11417 7.621 212.024
bLay i (i 7.2. 134.933 10545 8529  77.333
bLay i (i 36. 119.028 10.095 3.447  58.889
bLay (i 5.0. 113.333 10.038 6.868  62.143
bLay (i 4.4. 108.250 9.850 3122  37.885
bLay (int)7>::Ce 6.4. 107.808 8.867 7.112 51154
Dvecgeom::cxx:: TubeUtilities::CircleTrajectoryIntersection<vecgeom::cxx 4.6. 395.789 8.794 10.222 629.474
Logical cRU Bolance
=
=




Putting It All Together - CMS Yardstick

Improvement Factors (total) with respect to G4

Legacy (TGeo) Geometry library:

O 1.5 - Algorithmic improvements in
infrastructure.

2015 VecGeom (estimate)

O 2.4 - Algorithmic improvements in
Geometry

O Some of the improvements can be back ~ Upcoming VecGeom (early result)
ported to G4 O 3.3 2 Further Geometric algorithmic
improvements and some vectorization

O Overhead of basket handling is under
control

O Ready to take advantage of
vectorization throughout.



Outlook

Early prototypes demonstrate speedup factor 2.5 to 3.5 in
complex detectors

Prototype with first version of EM physics schedule for end-
October

- Improved models for electrons (vs Geant4)
- New components created for GeantV, usable in Geant4:
VecGeom (extension of USolids)

Improve electron models (e.g. Multiple Scatter. in G4 10.2)



Summary

O GeantV is in development mode — and in many cases
researching different approaches or techniques

O A significant performance gain is a raison d’etre of GeantV
O Benchmarking of individual classes is constantly done

O Benchmarks of simple setups are created to monitor,
understand and improve the performance of new components

O Profilers are key tools in performance improvement



The authors acknowledge the contribution and support from
Intel (funding, technical and expert advisory, SW/HW)
CERN openlab

Thank you!



The X-Ray benchmark

I
O The X-Ray benchmark tests geometry y
navigation in a real detector geometry

O X-Ray scans a module with virtual
rays in a grid corresponding to pixels
on the final image

O Each ray is propagated from
boundary to boundary

O Pixel gray level determined by
number of crossings

O Asimple geometry example
(concentric tubes) emulating a tracker
detector used for Xeon©Phi

benchmark _

O To probe the vectorized geometry \ )
elekments + global navigation as
tas

O OMP parallelism + “basket” model




Scalability and throughput

O Better behavior using OMP
balanced

O Approaching well the ideal
curve up to native cores
count

O Balanced threading
converges towards the
compact model as all the
thread slots are filled

O It's worth to run Xeon Phi
saturated for our application

O The throughput performance
for a saturated KNC is
equivalent (for this setup) to the
dual Xeon E5-2650L@1.8GHz
server which hosts the card.

Speedup

=t==Xeon(R) Phi (compact)  “***Xeon(R) Phi (balanced) AXeon(R) 2x E5-2650L

120

/S/calability for X-Ray benchmark

100

N
v,
(9
Reayd
’
’

80 -

6 cores/Xeon
61 cores/phi
N

images/second

b
0 50 100 150 200 250 300
#threads
==X eon®Phi® COPRQ-7120 P compact “***Xeon®Phi® COPRQ-7120 P balanced
~"Xeon E5-2650L@1.8GHz
70
60
o t—>58

50 O ;/
— S

0 50 100 150 200 250 300
#threads




Next steps

Repeat the test with the introduction of

O Vectorised EM physics
O Vectorised transport in Mag Field

Develop simple classes for materials and particles to be able to run on coprocessors to
enable physics on the GPU and Xeon Phi full CMS yardstick

... implementing a “preliminary performance yard-stick” combining all prototype features
O SIMD gains in the full CMS experiment setup

O Coprocessor broker in action: part of the full transport kernel running on Xeon®Phi® and GPGPU
O Scalability and NUMA awareness for rebasketizing procedure

O ... achieving these just moves the target a bit further

... testing scaling up to large node count through MPI, e.g. on CORI
O Input distribution and Output gathering.

20



Vector performance

O Gaining up to 4.5 from vectorization
in basketized mode

O Approaching the ideal
vectorization case (when no
regrouping of vectors is done) .

O Vector starvation starts when filling
more thread slots than the core
count

O Performance loss is not
dramatic

O Better vectorization compared
to the Sandy-Bridge host
(expected)

Speedup vs. scalar version

6

(&)

I

[

N

-

o

«=t==Xeon(R) Phi Vector (ideal) ““**Xeon(R) Phi Vector (basket) A Xeon(R) 2x E5-2650 (basket)

Vectorization for X-Ray benchmark

A (OMP balanced affinity)
N
/% = \Q,J:
AR
5 _ = e
© s
0 5'0 1 60 15‘0 2(')0 250 360

#threads

Scalar case: Simple loop over pixels

Ideal vectorization case: Fill vectors
with N times the same X-ray

Realistic (basket) case: Group
baskets per geometry volume

21



