

John Apostolakis (CERN) for the GeantV development team

G. Amadio (UNESP), A. Ananya (CERN), J. Apostolakis (CERN) , A. Arora (CERN), M. Bandieramonte
(CERN), A. Bhattacharyya (BARC), C. Bianchini (UNESP), R. Brun (CERN), P. Canal (FNAL), F. Carminati
(CERN), L. Duhem (intel), D. Elvira (FNAL), A. Gheata (CERN), M. Gheata (CERN), I. Goulas (CERN), F.
Hariri (CERN), R. Iope (UNESP), S. Y. Jun (FNAL), G. Lima (FNAL), A. Mohanty (BARC), T.Nikitina (CERN),
M.Novak (CERN), W. Pokorski (CERN), A. Ribon (CERN), R. Sehgal (BARC), O. Shadura (CERN), S.
Vallecorsa (CERN), S. Wenzel (CERN), Y. Zhang (CERN)

GeantV

HEP Software Foundation Workshop
LAL, May 2 – 4, 2016

Outline

¤  GeantVectorized
¤  Challenges, ideas, goals

¤  Main components
¤  Geometry, physics, propagation in field, scheduler

¤  Development- different components in different stages

¤  Performance and benchmarks
¤  Vectorization: overheads vs. gains
¤  Geometry and physics performance: CPU and

acceleratorsbenchmarks

¤  Results on parts, simple setups and full detector

2

The challenge
Goal of improving performance by a factor
between 2.5 and 5 for large HEP detectors

Parts of transport of particles

•  Navigating in complex geometries - millions
of volumes

•  Interactions using physics models,

•  Propagation in EM field

Strongly CPU-bound, but must also generate
user-determined output (hits & ‘truth’
information)

The LHC uses about 50% of its distributed
GRID power for detector simulation

3

http://atlas.ch

The ideas

¤  Transport particles in groups (vectors)
rather than one by one
¤  Group particles by geometry

volume or same physics
¤  No free lunch: data gathering

overheads < vector gains

¤  Dispatch SoA to functions with vector
signatures
¤  Use backends to abstract

interface: vector, scalar
¤  Use backends to insulate

technology/library: Vc, Cilk+,
VecMic, …

¤  Redesign the library and workflow to
target fine grain parallelism
¤  CPU, GPU, Phi, Atom, …
¤  Aim for a 2.5x-5x faster code,

understand hard limits for more

4

template<class Backend>
Backend::double_t
common_distance_function(Backend::double_t input)
{
 // Single kernel algorithm using Backend types
}

struct VectorVcBackend
{
 typedef Vc::double_v double_t;
 typedef Vc::double_m bool_t;
 static const boolIsScalar=false;
 static const bool IsSIMD=true;
};
// Functions operating with
backend types

distance(vector_type &); distance(double &);

struct ScalarBackend
{
 typedef double double_t;
 typedef bool bool_t;
 static const bool IsScalar=true;
 static const bool IsSIMD=false;
};
// Functions operating with backend
types

Scalar interface Vector interface

code.compeng.uni-frankfurt.de/projects/vc

Outputs

Baskets

TO SCHEDULER

GeantV

105 baskets/sec

5

Performance & Benchmarks

¤  Computing performance is a raison d’etre for GeantV

¤  Almost every component/class has a test and a benchmark for
scalar and vector performance
¤  Automated test, which must be run for each solid
¤  Individual physics model sampling methods

¤  Benchmarks for
¤  Navigation in simple and full detector geometries
¤  ‘Full’ simulation using all integrated components

6

Geometry solid performance

¤  Geometry is 30-40% of the total
CPU time in Geant4

¤  Vectorized geometry algorithms
to take maximum advantage of
SIMD

¤  Benchmark each method
against implementations in
Root, Geant4 and USolids
library

¤  Performance gains also in
scalar mode for some cases

¤  Testing the same on GPU

7

Speedup vs Number of
particles

16
particles

1024
particles

SIMD
max

Intel Ivy-Bridge (AVX) 2.8 4 4

Intel Haswell (AVX2) 3 5 4

Intel Xeon Phi (AVX-512) 4.1 4.8 8

Overall performance for a simplified detector vs.
scalar ROOT/5.34.17

Vectorization performance for trapezoid shape
navigation (Xeon®Phi® C0PRQ-7120 P)

Geometry performance on K20 GPU
¤  Speedup for different navigation

methods of the box shape,
normalized to scalar CPU
¤  Scalar (specialized/unspecialized)
¤  Vector
¤  GPU (Kepler K20)
¤  ROOT

¤  Data transfer in/out is
asynchronous
¤  Measured only the kernel

performance – relying on constant
throughput to hide transfer latency

¤  Will explore how to saturate the
die: either with large track
containers, running a single kernel,
or with smaller containers
dynamically scheduled.

¤  Demonstrates that we can run the
same code on CPU/accelerators;
further optimization anticipated

8

Physics
¤  Objective: a vector/accelerator friendly

re-write of physics code
¤  Alias sampling (first choice)
¤  Accept/reject (when needed)

¤  Identify when

¤  The initial vectorized gamma models
show performance gain already for small
vector size
¤  1.2x – 2.3x on SSE
¤  1.8x – 2.3x on AVX
¤  6x on Xeon Phi

¤  Use profilers to identify hotspots (vtune,
Mac Instruments, igprof)

9

0

1

2

3

4

5

6

7

8

10
 100
 500
 1000
 5000
 10000

Sp
ee

du
p

Number of tracks

Speed-up on Xeon Phi(R) C0PRQ-7120
 for Compton KN model compared to Geant4-

like implementation

T(Geant4)/T(Scalar)

T(Geant4)/T(Vector)

Preliminary Performance: Alias Sampling Method – Vector
•  Scalar/Vector

–  SSE (Intel Xeon E5 – 2650 @ 2.60 GHz) – SSE2
–  AVX (Intel Xeon E5 – 2620 @ 2.00 GHz)

20

Preliminary Performance: Alias Sampling Method – Vector
•  Scalar/Vector

–  SSE (Intel Xeon E5 – 2650 @ 2.60 GHz) – SSE2
–  AVX (Intel Xeon E5 – 2620 @ 2.00 GHz)

20

Preliminary Performance: Alias Sampling Method – Vector
•  Scalar/Vector

–  SSE (Intel Xeon E5 – 2650 @ 2.60 GHz) – SSE2
–  AVX (Intel Xeon E5 – 2620 @ 2.00 GHz)

20

Hits/digits I/O
¤  “Data” mode

¤  Send concurrently data to one
thread dealing with full I/O

10

0

0.5

1

1.5

2

2.5

3

3.5

4

0 20 40 60 80 100 120

re
la

tiv
e

 ti
m

e
 o

ve
rh

e
a

d
 w

rt
 n

o
 I/

O

Throughput [MB/s]

GeantV concurrent I/O
8 data producer threads + 1 I/O thread

Data I/O (old)
Buffer I/O (new)

¤  “Buffer” mode
¤  Send concurrently local trees

connected to memory files produced by
workers to one thread dealing with
merging/write to disk

¤  Integrating user code with a
highly concurrent framework
should not spoil performance

Basketizer performance
¤  Investigated different ways of scheduling

& sharing work - lock free queues, ..
¤  Changes in scheduler require non-

trivial effort (rewrite)

¤  Seqerial still large, due to high re-
basketizing load (concurrent copying)
¤  O(105) baskets/second on Intel Core

i7™
¤  Algorithm already lock free
¤  Rate will go down with addition of

physics processes

¤  Ongoing work to improve scalability
¤  Re-use baskets for several steps
¤  Introduce NUMA awareness
¤  Clone scheduler in NUMA-aware

groups for use in many cores (e.g.
KNL)

11

Lock-free algorithm
(memory polling) Algorithm using spinlocks

Rebasketizing
2x Intel(R) Xeon(R) CPU E5-2630 v3 @ 2.40GHz

Work stealing only
when needed

X-ray benchmark: Vector performance

¤  Scalar case: Simple loop over pixels

¤  Ideal vectorization case: Fill vectors
with N times the same X-ray

¤  Realistic (basket) case: Group
baskets per geometry volume

12

¤  The X-Ray benchmark tests
geometry navigation in a
detector geometry

¤  In simple geometry example
(concentric tubes) emulates a
tracker detector - used for
Xeon©Phi benchmark
¤  OMP parallelism + “basket”

model

¤  Gained up to 4.5 from
vectorization in basketized
mode
¤  Approaching the ideal case.

Profiling for the X-Ray benchmark

¤  Good vectorization intensity,
thread activity and core
usage for the X-Ray
basketized benchmark on a
Xeon Phi (61 core
C0PRQ-7120 P)

¤  The performance tools gave
us good insight on the current
performance of GeantV

13

14

Putting It All Together - CMS Yardstick

¤ Some of the improvements can be back
ported to G4

¤ Overhead of basket handling is under
control

¤ Ready to take advantage of
vectorization throughout.

Improvement Factors (total) with respect to G4

Legacy (TGeo) Geometry library:
¤ 1.5à Algorithmic improvements in

infrastructure.

2015 VecGeom (estimate)
¤ 2.4à Algorithmic improvements in

Geometry

Upcoming VecGeom (early result)
¤ 3.3à Further Geometric algorithmic

improvements and some vectorization

28

Outlook

¤  Early prototypes demonstrate speedup factor 2.5 to 3.5 in
complex detectors

¤  Prototype with first version of EM physics schedule for end-
October

¤  - Improved models for electrons (vs Geant4)

¤  - New components created for GeantV, usable in Geant4:

¤  VecGeom (extension of USolids)

¤  Improve electron models (e.g. Multiple Scatter. in G4 10.2)

15

Summary

¤  GeantV is in development mode – and in many cases
researching different approaches or techniques

¤  A significant performance gain is a raison d’etre of GeantV

¤  Benchmarking of individual classes is constantly done

¤  Benchmarks of simple setups are created to monitor,
understand and improve the performance of new components

¤  Profilers are key tools in performance improvement

16

Thank you!

17

The authors acknowledge the contribution and support from
Intel (funding, technical and expert advisory, SW/HW)

CERN openlab

The X-Ray benchmark

¤  The X-Ray benchmark tests geometry
navigation in a real detector geometry

¤  X-Ray scans a module with virtual
rays in a grid corresponding to pixels
on the final image
¤  Each ray is propagated from

boundary to boundary
¤  Pixel gray level determined by

number of crossings

¤  A simple geometry example
(concentric tubes) emulating a tracker
detector used for Xeon©Phi
benchmark
¤  To probe the vectorized geometry

elements + global navigation as
task

¤  OMP parallelism + “basket” model

18

OMP
threads

Scalability and throughput

¤  Better behavior using OMP
balanced
¤  Approaching well the ideal

curve up to native cores
count

¤  Balanced threading
converges towards the
compact model as all the
thread slots are filled

¤  It’s worth to run Xeon Phi
saturated for our application

¤  The throughput performance
for a saturated KNC is
equivalent (for this setup) to the
dual Xeon E5-2650L@1.8GHz
server which hosts the card.

19

20

Next steps
¤ Repeat the test with the introduction of

¤ Vectorised EM physics
¤ Vectorised transport in Mag Field

¤ Develop simple classes for materials and particles to be able to run on coprocessors to
enable physics on the GPU and Xeon Phi full CMS yardstick

¤ … implementing a “preliminary performance yard-stick” combining all prototype features
¤ SIMD gains in the full CMS experiment setup
¤ Coprocessor broker in action: part of the full transport kernel running on Xeon®Phi® and GPGPU
¤ Scalability and NUMA awareness for rebasketizing procedure
¤ … achieving these just moves the target a bit further

¤ … testing scaling up to large node count through MPI, e.g. on CORI
¤ Input distribution and Output gathering.

29

Vector performance

¤  Gaining up to 4.5 from vectorization
in basketized mode
¤  Approaching the ideal

vectorization case (when no
regrouping of vectors is done) .

¤  Vector starvation starts when filling
more thread slots than the core
count
¤  Performance loss is not

dramatic
¤  Better vectorization compared

to the Sandy-Bridge host
(expected)

¤  Scalar case: Simple loop over pixels

¤  Ideal vectorization case: Fill vectors
with N times the same X-ray

¤  Realistic (basket) case: Group
baskets per geometry volume

21

