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Outline 

¤  GeantVectorized 
¤  Challenges, ideas, goals 

¤  Main components 
¤  Geometry, physics, propagation in field, scheduler 

¤  Development- different components in different stages 

¤  Performance and benchmarks 
¤  Vectorization: overheads vs. gains 
¤  Geometry and physics performance: CPU and 

acceleratorsbenchmarks 

¤  Results on parts, simple setups and full detector 
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The challenge 
Goal of improving performance by a factor 
between 2.5 and 5 for large HEP detectors 

Parts of transport of particles 

•  Navigating in complex geometries - millions 
of volumes 

•  Interactions using physics models,  

•  Propagation in EM field  

Strongly CPU-bound, but must also generate 
user-determined output  (hits & ‘truth’ 
information) 

The LHC uses about 50% of its distributed 
GRID power for detector simulation 
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http://atlas.ch 



The ideas 

¤  Transport particles in groups (vectors) 
rather than one by one 
¤  Group particles by geometry 

volume or same physics 
¤  No free lunch: data gathering 

overheads < vector gains 

¤  Dispatch SoA to functions with vector 
signatures 
¤  Use backends to abstract 

interface: vector, scalar 
¤  Use backends to insulate 

technology/library: Vc, Cilk+, 
VecMic, …  

¤  Redesign the library and workflow to 
target fine grain parallelism 
¤  CPU, GPU, Phi, Atom, … 
¤  Aim for a 2.5x-5x faster code, 

understand hard limits for more 
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template<class Backend> 
Backend::double_t  
common_distance_function( Backend::double_t input ) 
{ 
    // Single kernel algorithm using Backend types 
} 

struct VectorVcBackend 
{ 
    typedef Vc::double_v double_t; 
    typedef Vc::double_m bool_t; 
    static const boolIsScalar=false; 
    static const bool IsSIMD=true; 
}; 
// Functions operating with 
backend types 

distance( vector_type  &); distance( double &); 

struct ScalarBackend 
{ 
    typedef double double_t; 
    typedef bool   bool_t; 
    static const bool IsScalar=true; 
    static const bool IsSIMD=false; 
}; 
// Functions operating with backend 
types 

Scalar interface Vector interface 

code.compeng.uni-frankfurt.de/projects/vc 



Outputs 

Baskets 

TO SCHEDULER 

GeantV 

105 baskets/sec 
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Performance & Benchmarks 

¤  Computing performance is a raison d’etre for GeantV 

¤  Almost every component/class has a test and a benchmark for 
scalar and vector performance 
¤  Automated test, which must be run for each solid  
¤  Individual physics model sampling methods 

¤  Benchmarks for  
¤  Navigation in simple and full detector geometries 
¤  ‘Full’ simulation using all integrated components 
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Geometry solid performance 

¤  Geometry is 30-40% of the total 
CPU time in Geant4 

¤  Vectorized geometry algorithms 
to take maximum advantage of 
SIMD 

¤  Benchmark each method 
against implementations in 
Root, Geant4 and USolids 
library 

¤  Performance gains also in 
scalar mode for some cases 

¤  Testing the same on GPU 
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Speedup vs  Number of 
particles 

16  
particles 

1024  
particles 

SIMD  
max 

Intel Ivy-Bridge (AVX) 2.8 4 4 

Intel Haswell (AVX2) 3 5 4 

Intel Xeon Phi (AVX-512) 4.1 4.8 8 

Overall performance for a simplified detector vs. 
scalar ROOT/5.34.17 
 

Vectorization performance for trapezoid shape 
navigation (Xeon®Phi® C0PRQ-7120 P) 



Geometry performance on K20 GPU 
¤  Speedup for different navigation 

methods of the box shape, 
normalized to scalar CPU 
¤  Scalar (specialized/unspecialized) 
¤  Vector 
¤  GPU (Kepler K20) 
¤  ROOT 

¤  Data transfer in/out is 
asynchronous 
¤  Measured only the kernel 

performance – relying on constant 
throughput to hide transfer latency 

¤  Will explore how to saturate the 
die: either with large track 
containers, running a single kernel, 
or with smaller containers 
dynamically scheduled. 

¤  Demonstrates that we can run the 
same code on CPU/accelerators; 
further optimization anticipated 
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Physics 
¤  Objective: a vector/accelerator friendly 

re-write of physics code 
¤  Alias sampling (first choice) 
¤  Accept/reject (when needed) 

¤  Identify when  

¤  The initial vectorized gamma models 
show performance gain already for small 
vector size 
¤  1.2x – 2.3x on SSE 
¤  1.8x – 2.3x on AVX 
¤  6x on Xeon Phi 

¤  Use profilers to identify hotspots (vtune, 
Mac Instruments, igprof) 

 
9 

0


1


2


3


4


5


6


7


8


10
 100
 500
 1000
 5000
 10000


Sp
ee

du
p 

Number of tracks 

Speed-up on Xeon Phi(R) C0PRQ-7120 
 for Compton KN model compared to Geant4-

like implementation 

T(Geant4)/T(Scalar) 
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Preliminary Performance: Alias Sampling Method – Vector
•  Scalar/Vector 

–  SSE (Intel Xeon E5 – 2650 @ 2.60 GHz) – SSE2
–  AVX (Intel Xeon E5 – 2620 @ 2.00 GHz) 
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Hits/digits I/O 
¤  “Data” mode 

¤  Send concurrently data to one 
thread dealing with full I/O 
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GeantV concurrent I/O 
8 data producer threads + 1 I/O thread 

Data I/O (old) 
Buffer I/O (new) 

¤  “Buffer” mode 
¤  Send concurrently local trees 

connected to memory files produced by 
workers to one thread dealing with 
merging/write to disk 

¤  Integrating user code with a 
highly concurrent framework 
should not spoil performance 



Basketizer performance 
¤  Investigated different ways of scheduling 

& sharing work - lock free queues, .. 
¤  Changes in scheduler require non-

trivial effort (rewrite) 

¤  Seqerial still large, due to high re-
basketizing load (concurrent copying) 
¤  O(105) baskets/second on Intel Core 

i7™  
¤  Algorithm already lock free 
¤  Rate will go down with addition of 

physics processes 

¤  Ongoing work to improve scalability 
¤  Re-use baskets for several steps 
¤  Introduce NUMA awareness 
¤  Clone scheduler in NUMA-aware 

groups for use in many cores (e.g. 
KNL) 
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Lock-free algorithm 
(memory polling) Algorithm using spinlocks 

Rebasketizing 
2x Intel(R) Xeon(R) CPU E5-2630 v3 @ 2.40GHz 

Work stealing only  
when needed 



X-ray benchmark: Vector performance 

¤  Scalar case: Simple loop over pixels 

¤  Ideal vectorization case: Fill vectors 
with N times the same X-ray 

¤  Realistic (basket) case: Group 
baskets per geometry volume  
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¤  The X-Ray benchmark tests 
geometry navigation in a 
detector geometry 

¤  In simple geometry example 
(concentric tubes) emulates a 
tracker detector - used for 
Xeon©Phi benchmark 
¤  OMP parallelism + “basket” 

model 

¤  Gained up to 4.5 from 
vectorization in basketized 
mode 
¤  Approaching the ideal case. 



Profiling for the X-Ray benchmark 

¤  Good vectorization intensity, 
thread activity and core 
usage for the X-Ray 
basketized benchmark on a 
Xeon Phi (61 core 
C0PRQ-7120 P) 

¤  The performance tools gave 
us good insight on the current 
performance of GeantV 
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Putting It All Together - CMS Yardstick

¤ Some of the improvements can be back 
ported to G4

¤ Overhead of basket handling is under 
control 

¤ Ready to take advantage of 
vectorization throughout.

Improvement Factors (total) with respect to G4

Legacy (TGeo) Geometry library:
¤ 1.5à Algorithmic improvements in 

infrastructure.

2015 VecGeom (estimate)
¤ 2.4à Algorithmic improvements in 

Geometry

Upcoming VecGeom (early result)
¤ 3.3à Further Geometric algorithmic 

improvements and some vectorization
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Outlook 

¤  Early prototypes demonstrate speedup factor 2.5 to 3.5 in 
complex detectors 

¤  Prototype with first version of EM physics schedule for end-
October 

¤  - Improved models for electrons (vs Geant4) 

¤  - New components created for GeantV,  usable in Geant4: 

¤      VecGeom  (extension of USolids) 

¤      Improve electron models (e.g. Multiple Scatter. in G4 10.2) 
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Summary 

¤  GeantV is in development mode – and in many cases 
researching different approaches or techniques 

¤  A significant performance gain is a raison d’etre of GeantV 

¤  Benchmarking of individual classes is constantly done 

¤  Benchmarks of simple setups are created to monitor, 
understand and improve the performance of new components 

¤  Profilers are key tools in performance improvement 
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Thank you! 
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The X-Ray benchmark 

¤  The X-Ray benchmark tests geometry 
navigation in a real detector geometry 

¤  X-Ray scans a module with virtual 
rays in a grid corresponding to pixels 
on the final image 
¤  Each ray is propagated from 

boundary to boundary  
¤  Pixel gray level determined by 

number of crossings 

¤  A simple geometry example 
(concentric tubes) emulating a tracker 
detector used for Xeon©Phi 
benchmark 
¤  To probe the vectorized geometry 

elements + global navigation as 
task 

¤  OMP parallelism + “basket” model 
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OMP 
threads 



Scalability and throughput 

¤  Better behavior using OMP 
balanced  
¤  Approaching well the ideal 

curve up to native cores 
count 

¤  Balanced threading 
converges towards the 
compact model as all the 
thread slots are filled 

¤  It’s worth to run Xeon Phi 
saturated for our application 

¤  The throughput performance 
for a saturated KNC is 
equivalent (for this setup) to the 
dual Xeon E5-2650L@1.8GHz 
server which hosts the card. 
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Next steps
¤ Repeat the test with the introduction of

¤ Vectorised EM physics
¤ Vectorised transport in Mag Field

¤ Develop simple classes for materials and particles to be able to run on coprocessors to 
enable physics on the GPU and Xeon Phi full CMS yardstick

¤ … implementing a “preliminary performance yard-stick” combining all prototype features 
¤ SIMD gains in the full CMS experiment setup
¤ Coprocessor broker in action: part of the full transport kernel running on Xeon®Phi® and GPGPU
¤ Scalability and NUMA awareness for rebasketizing procedure
¤ … achieving these just moves the target a bit further

¤ … testing scaling up to large node count through MPI, e.g. on CORI
¤ Input distribution and Output gathering. 
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Vector performance 

¤  Gaining up to 4.5 from vectorization 
in basketized mode 
¤  Approaching the ideal 

vectorization case (when no 
regrouping of vectors is done) . 

¤  Vector starvation starts when filling 
more thread slots than the core 
count 
¤  Performance loss is not 

dramatic  
¤  Better vectorization compared 

to the Sandy-Bridge host 
(expected) 

¤  Scalar case: Simple loop over pixels 

¤  Ideal vectorization case: Fill vectors 
with N times the same X-ray 

¤  Realistic (basket) case: Group 
baskets per geometry volume  
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