
CMake: Improving 
The Build

Attila Krasznahorkay



Build Steps
• Building a given project takes many steps

• All taken care of by NICOS of course

• Much of this was originally designed on top of CVS+CMT

• Checkout

• Currently checking out 20-500 packages from SVN

• Should simplify a lot with Git. But in the end, not a major bottleneck.

• Configuration

• Setting up the environment done with asetup, in O(seconds)

• Running CMake scales not the best with the number of packages (numbers shown later a bit unreliable as well)

• Still, probably can’t do miracles at this point

• Build

• Other than using something other than GNU Make, can’t change much here

• Currently the build system doesn’t make a big difference. Could change drastically when introducing continuous 
integration.

• Installation, RPM building

• Takes care of moving O(10k), O(1GB) files

• Can take significant O(10min) time

• Testing

• Building the test code currently done as part of the normal build. Not insignificant by now.

• Running done at the end of the build. After installing the code on AFS.

• Personally I’m happy with this setup.

2



Build Time (devval,rel_1)

3

Build Testing



Build Time (devval,rel_1)

4

Configuration Build Installation RPM Build

AtlasExternal 7s 15m 34s 4s 2m 42s

Gaudi 18s 4m 26s 1s 11s

DetCommon 34s 2m 29s 39s 7m 15s

AtlasCore 1m 25s 13m 57s 46s 2m 42s

AtlasConditions 31s 20m 39s 1m 51s 11m 14s

AtlasEvent 2m 15s 1h 11m 20s 8m 12s 28m 6s

AtlasReconstruction 5m 18s 56m 51s 9m 30s 17m 46s

AtlasSimulation 4m 20s 25m 41s 1m 40s 17m 18s

AtlasTrigger 3m 28s 1h 20m 30s 13m 55s 29m 15s

AtlasAnalysis 4m 11s 1h 3m 28s 8m 45s 17m 38s

AtlasOffline 59s 4m 52s 46s 2m 41s

AtlasHLT 49s 3m 21s 14s 25s

Total 24m 15s 6h 3m 8s 46m 23s 2h 17m 13s



Build Time (devval,rel_1)

5

21:36:00 22:48:00 00:00:00 01:12:00 02:24:00 03:36:00

AtlasExternals	build
AtlasExternals	 install

AtlasExternals	RPM	build
Gaudi	build
Gaudi	install

Gaudi	RPM	build
DetCommon	build
DetCommon	install

DetCommon	RPM	build
AtlasCore	build
AtlasCore	install

AtlasCore	RPM	build
AtlasConditions	build
AtlasConditions	install

AtlasConditions	RPM	build
AtlasEvent	build
AtlasEvent	 install

AtlasEvent	RPM	build
AtlasReconstruction	build
AtlasReconstruction	install

AtlasReconstruction	RPM	build
AtlasSimulation	build
AtlasSimulation	install

AtlasSimulation	RPM	build
AtlasTrigger	 build
AtlasTrigger	 install

AtlasTrigger	 RPM	build
AtlasAnalysis	build
AtlasAnalysis	install

AtlasAnalysis	RPM	build

devval,rel_1



Merging Projects
• Should help reduce the downtime in the builds

• Which projects should stay separate?

• AtlasExternals must be a separate project for technical reasons

• DetCommon (probably) needs to stay separate

• Although I don’t know exactly yet how this project is going to be used by the online 
software with CMake…

• Any good reason to keep AtlasSimulation separate?

• Could we merge AtlasCore, AtlasConditions, AtlasEvent, AtlasReconstruction, 
AtlasTrigger, AtlasAnalysis (plus possibly AtlasSimulation and AtlasOffline)?

• Would help a lot with finding CMake configuration problems early

• Currently if a CMake error is collected into a package in AtlasTrigger, that will only 
bomb the build in the middle of the night

• No chance for the release shifter to catch it early, take the tag out, and restart the 
build

• Building everything up until AtlasCore takes ~30 minutes. A configuration problem 
in this gargantuan project would be discovered within ~45 minutes of starting the 
build

6



Testing
• A lot of unit testing code is built as part of the normal build at the 

moment

• When building the code “by hand” during development, this is not a bad thing

• Some of the unit tests can uncover problems already at build time

• I’m not in favour of actively running unit tests as part of the normal build, even 
in “development mode” though

• Much more prefer to require the user to run “make test” after running “make”

• Propose to change the nightly build procedure a bit

• Don’t build the unit test executables during the normal build. Imagine it to be 
done with something like:

• Then run the ATN tests, after the normal build has finished, like:

7

cmake -DNO_AUTO_TEST_BUILD=TRUE …
make

make atlas_tests
ctest --label-regex “^AthContainers$” —output-on-failure
…



Externals (1)
• Currently (almost) all the Find<Foo>.cmake 

modules are in either AtlasCMake or AtlasLCG

• It made sense for the initial development, but will become 
very hard to manage very soon

• Tried something slightly different with  
External/AtlasGoogleTest

• The package builds GTest/GMock with its 
CMakeLists.txt file

• It also provides a FindGMock.cmake file 
(FindGTest.cmake is picked up from CMake itself)

• Should we outsource all the Find<Foo>.cmake 
files into the “old” glue packages?

8

https://svnweb.cern.ch/trac/atlasoff/browser/Build/AtlasCMake/trunk/modules
https://svnweb.cern.ch/trac/atlasoff/browser/Build/AtlasLCG/trunk/modules
https://svnweb.cern.ch/trac/atlasoff/browser/External/AtlasGoogleTest/trunk/CMakeLists.txt
https://svnweb.cern.ch/trac/atlasoff/browser/External/AtlasGoogleTest/trunk/cmake/FindGMock.cmake
https://cmake.org/cmake/help/v3.0/module/FindGTest.html


Externals (2)
• Currently use externals with:

• Picking them up from LCG

• Picking them (TDAQ) up from custom locations on AFS, and from 
custom RPMs

• Building them as part of AtlasExternals

• Moving between the first and third is relatively easy

• Currently we build CLHEP 2.2.0.4 inside AtlasExternals.

• Only had to collect External/AtlasCLHEP into AtlasExternals for 
this. (And all the other externals using CLHEP.)

• This was discussed for a long time by now: Should we just ditch 
LCG completely, and build everything ourselves?

• Currently AtlasExternals builds 18 packages

• We pick up ~80 packages from LCG

• At this point more of a political question than a technical one…
9



Summary

• Currently very far from the 3 hour build time target

• Cutting the build of the unit tests should help somewhat

• Delaying RPM builds to the end could also help

• Merging projects could be good

• But probably not going to reach 3 hours with all of this. 
We’ll have to modify the code itself to reach that goal.

• Adding more externals to the build will just make 
this worse

• Incremental builds should help a lot

• But will probably require substantial development

10


