
Git for ATLAS offline

Edward Moyse
o.b.o. ATLAS Git study group

with thanks to many others

Introduction

• One of the recommendations of the Software Build and Infrastructure review was the
formation of a GIT Study group within ATLAS

• Members:

• Graeme Stewart, Walter Lampl, Goetz Gaycken, Elmar Ritsch, Emil Obreshkov, Frank
Winklmeier, Stefan Stonjek, Edward Moyse

• We’ve been meeting since mid January, approximately every week / every other week

• https://twiki.cern.ch/twiki/bin/viewauth/AtlasComputing/GitStudyGroup

2

Git is the currently favored source code management system (SCM) at CERN with SVN support
currently scheduled to stop around the end of Run-2. It is thus almost mandatory for ATLAS to
migrate to git. This opens up the possibility to use a modern collaborative software platform like
gitlab (or github) to manage code reviews and code change collection. While git has many
advantages over SVN, it potentially represents a significant change in the developer workflow and
needs to be carefully prepared. A study group should be tasked with finding a workable and timely
migration strategy from SVN to git. This includes evaluating whether migrating from individual
versioned packages to the “pull request workflow model” that comes naturally with git/gitlab
matches the needs of ATLAS and provides sufficient gains, for instance in managing the forward
sweeping of changes in stable releases, to warrant a significant disruption for developers. The role
of release coordinators and different release branches should be reviewed in the light of new
features and workflows. We note that git’s ability to tag the entire state of the repository would
largely remove the need for the current tag collector and would simplify the process of building an
entire offline release independently. The study group should take advantage of the experience
from CMS’ migration to git (http://cms-sw.github.io/index.html) and experts with git experience
within the collaboration.

https://cds.cern.ch/record/2126984
https://twiki.cern.ch/twiki/bin/viewauth/AtlasComputing/GitStudyGroup

First questions and conclusions

• Is git an acceptable replacement for SVN?

3

• Is git an acceptable replacement for SVN?

• YES!!!

First questions and conclusions

4

• Is git an acceptable replacement for SVN?

• YES!!!

• Repository per package or for all of ATLAS offline?

• Unless performance is impacted, one per ATLAS (still discussing … but definitely not per
package)

• Github vs Gitlab

• In the absence of any pressing reason not to, looks like we’re drifting toward gitlab

• Major advantage is CERN support (e.g. e-groups)

• Possible disadvantage: performance (e-groups?)

• Do we import all of SVN, or just e.g. from 20.1 onwards?

• Still being discussed. In any case the SVN repository will exist, in read-only mode.

• Software archeology will be possible

First questions and conclusions

5

Reminder: ATLAS releases

• ATLAS currently has many releases in use
concurrently, and each release has ~2200
packages representing modules of ‘code’

• This is partially to manage ownership and
permissions

• Cannot build release directly - need Tag
Collector

6

ATLAS	Workflow	 “GitFlow”	

h"p://nvie.com/posts/a-successful-git-branching-model/	
	

svmroot
path

package

package

path

trunk
tags

branch

trunk
tags

branch

package trunk
tags

branch

package

package trunk
tags

branch

trunk
tags

branch

path
package

package trunk

tags

branch

path trunk
tags

branch

New Code
rXTag

rX'

Packages & import strategies

• Oleg has shown ways in which we could reproduce the current system of packages

• e.g. make git branches representing package tags

• https://indico.cern.ch/event/506187/

• But unwieldy - and we (or I think, at least most of us) conclude that when we move to git
we should embrace more git-like workflows.

• Do we want to import all of SVN?

• Can git handle a repository of our size (btw we are comparable to CMS, and smaller than
the linux kernel)?

• Should we use git submodules / subtrees?

• Have two import strategies:

• atlasgit - Imports offline SW from release 20.1.0 onwards (i.e. truncates history), veto files
>100kB

• aogtfat - full import of all packages and all files
7

https://indico.cern.ch/event/506187/
https://gitlab.cern.ch/graemes/atlasgit

Atlasgit results…

8

Time Imported Tags Size (du Total) Size (du Master
branch) time git status

r20 minimal 3h30m 9140 1584MB 670MB 0.69s

r20 full 9h45m 22880 2415MB 670MB 0.97s

Take only tags in releases + trunk

Take all tags younger than the
oldest tag + trunk

File Type Files Size (MB) Average (kB)
.cxx 16673 139 8.4
.py 11656 96 8.2
.h 20318 57 2.8

ChangeLog 2210 28 12.7
.root 605 20 33
.txt 2075 16 7.7
.dat 578 15 26
.xml 1333 12 9.2
.java 839 8 9.5
Total 67289 459 6.8

ChangeLog files are big!

‘git log’ is a much better idea
(provided developers make
meaningful commit messages).

Aogtfat

• https://gitlab.cern.ch/goetz/aogtFat

• Sizes

• 3 Gb full SVN clone (individual package clones) including full commit history, but extra
storage needed for branches/tags which would collect all packages of a release (is about
~ 200kb / releases; not included in these 3Gb)

• 600 Mb full commit history and including tags for 1000 releases+nightlies. but excluding
files >100k.

• 200 Mb, excluding files >100k, no commit history, only importing releases from 20.1
onwards.

• [After one year of usage assuming that commits are merged in for each nightly as
they are (i,e, not squashing them) the 200 Mb will presumably grow to the 600
Mb-1Gb, My estimation: growth of 200kb / nightly in average, and we have O(10-20)
release branches]

9

Slide from Goetz

Git workflows

• Git flow:

• Many, many branches

• master branch, feature branches, develop
branch, release branches, hot fix branches etc

• Developments happen on develop or feature,
and are eventually merged into master

• Hot fixes are exceptions… e.g. sometimes
you urgently need to fix a Tier-0 breaking bug

• Disadvantages

• Complex & error prone - easy to forget to
commit to master and/or develop

• Mostly working on branches other than
master, which is not what some tools expect

10

Git workflows (2)

• Github/Gitlab flow

• Several variants

• Key idea in github flow is to only have
feature branches

• Merge often, minimise amount of code lying
around

• (Unfortunately) a bit too simple for us …
we do need to have (many) releases

• Can still keep basic concepts though, but
extend with releases

• Documentation here:

• http://docs.gitlab.com/ee/workflow/
gitlab_flow.html#introduction

11

Github flow

Gitlab flow

http://docs.gitlab.com/ee/workflow/gitlab_flow.html#introduction

First thoughts for ATLAS

• Have locked core repository, with a limited number of ‘approvers’

• Branch per release

• Forks

• Normal developers fork and have their own repo for developments.

• Branch on these repos for specific feature e.g. fixATLASRECTS6975

• Groups might also fork, e.g. have a Tracking repo for tracking developments

• Branch for feature e.g. GPU_tracking_developments

• Merge requests

• On private repos - up to repo manager

• On core repo, approvers will examine CI results and accept or reject tags

12

Use cases:

• ‘Hotfix’ to Tier-0

• We have discovered a bug which deletes every other event if it’s a full moon.

• Procedure

• Developer(s) develop patch on private fork (could be personal, could be for a group).

• After local testing, submit a merge request to core repo’s tier-0 branch

• ‘Code guardians’ examine fix, and discuss improvements with developers

• They push more fixes to their branch, and CI tests continue

• ‘Code guardians’ accept change to the tier-0 release

• ‘Long term development’

• Procedure

• Developers create feature branch on their repo

• Once done, request merge to master on ‘core’ repo

• Code review, as above… 13

In practice …

• e.g. Fix for bug in reco nightly (in this case, an algorithm is throwing an exception):

• Developer creates branch and makes a patch in private area.

• When ready (after CI + other tests), can request merge (in this case to master)

14

15

Can flag as WIP
(can’t be merged)

Can assign, create/
use milestones and

add labels

Can examine diff, as
a final check it

looks ok

Can auto remove
source branch
when accepted.

16

Code review
discussion

Possible helper tools

• You can checkout the entire repo, but this can become unwieldy, so we investigated using spare-
checkout.

• This takes about 45s on my laptop @ CERN and give:

• Bit verbose to do:

• CMS has e.g. cms-addpkg - probably we’d want something similar to wrap the above

• General feeling is that we need pre-commit (pre-receive) on the master git repo

• Block e.g. upload of large binary files, misnamed files…

• Should provide an actual error messages of what part of the code (i.e. what line) is offending and
why

• Include in that error message whom to contact if the pre-commit hook seems to be misbehaving

17

git init
git config core.sparsecheckout true
echo Tracking/TrkEvent/TrkTrack >> .git/info/sparse-checkout
git remote add origin ssh://git@gitlab.cern.ch:7999/atlas-sw-git/aogt2.git
git pull origin master

150M ./.git
184K ./Tracking

http://cms-sw.github.io/git-cms-addpkg.html

Misc

• Submodules / subtrees

• Use for e.g. externals

• Details TBD

• Rebase

• Useful tool, but potentially problematic (must not use after commits made public!)

• Need to discuss recommendations … will likely need to update them as we start using Git

• Large files

• SVN contained some big files - we really don’t want these in Git

• LFS looks to be a good solution

• To be investigated.

18

https://git-lfs.github.com

TODO and conclusions

• We need to determine structure of imported repo (and which tool will be used)

• We need to start regular tests of standard use-cases

• Once CMake builds from git are available, we can start on CI tests

• Still lots of details to sort, but pretty clear that git will be a very good fit for ATLAS

• Eagerly looking forward to the move!

19

Backup

Study group tasks

• Or … things we need to know:

• Structure of repository

• Workflow

• How do we collect SW changes

• How do we distribute them in releases

• Do we still need patch releases?

• etc

• When do we do the migration

• Spoiler: this isn’t going to be answered
today.

21

https://twiki.cern.ch/twiki/bin/viewauth/AtlasComputing/GitStudyGroup

Warning: Intrusive Change
• This is going to be a major and intrusive change in the developer workflow

• High level concept of development remains
• Develop, Local test, Submit, Integrate, Build

• But significant alteration to almost every aspect here:
• Forking repository (gitlab/github)
• Checking out the repository (or some section thereof)
• Managing code within this private copy first
• Committing back to gitlab
• Making a merge request
• Request tested and accepted

• In principle this offers many advantages, but it is a significant disruption to well
worn habits

Slide from Graeme

Checkout aogt…

• Local Mac clone via B40 wifi
• 2m27s (local SSD!)

23

git clone git status

Local Mac with SSD 2m27s*
or 40s 0.41s

Openstack VM 60s 0.78s

Local server to local
disk 33s 0.55s

Local server to AFS 3m3s 3m20s (cold)
to 13s (warm)

Glasgow Server
(Remote) 40s 0.98s

*Salle Dirac wireless!

Slide from Graeme

As an aside: it’s also possible to do a shallow checkout and only get a part of the
repository … CMS have a tool to do exactly this.

Another aside: SVN takes about 40s to checkout 4 packages (!)

Use tools!

• As well as web interface (and
command line, obviously), very nice
third party tools exist

• Also, integration with IDEs

24

SourceTree - a Windows/OSX Gui

SVN Repository
• Also notice that

constructing a
release from SVN
itself is basically
impossible
• Hence we have

the Tag Collector

25

svmroot
path

package

package

path

trunk
tags

branch

trunk
tags

branch

package trunk
tags

branch

package

package trunk
tags

branch

trunk
tags

branch

path
package

package trunk

tags

branch

path trunk
tags

branch

New Code
rXTag

rX'

Slide from Graeme

SVN - Pandora’s Box…
• SVN contains about 4800 packages

• But we only have ~2200 in our AtlasOffline release
• Many things are really not code packages at all

• In our “build” we have ~2GB of files, of which 1.4GB are > 100kB (.db, .root, .xml, …)
• Trigger/TrigT1/TrigT1TGC - 300MB of text data stored in ".db" files
• Found ESD and AOD POOL files

26

Extension N_files Total Size Average Size
.db 3649 715.2MB 196.0kB
.ref 785 223.9MB 285.2kB
.xml 1739 223MB 128kB
.root 1323 197MB 149kB
.py 25328 193MB 7.6kB

.data 70 155MB 2.2MB
.dat 932 149MB 160kB
.cxx 16464 131MB 8kB

Slide from Graeme

How mad are we…?

• Superficially what we are doing does seem to be reasonable
• Anyway, we do know of techniques to deal a bit better with large

repositories
• Time filtering…
• Shallow checkouts (caveat - CMS implemented this using AFS)

27

Source Lines Files Directories

Linux Kernel 13M 42k 3.5k

CMSSW 4.8M 44k 6.4k

ATLAS Offline
(trimmed) 4.1M 53k 13k

