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The ACTS project in a nutshellThe ACTS project in a nutshell
● A Common Tracking Software:

– set of experiment independent tracking tools/algorithms
– e.g. geometry navigation, extrapolation, Kalman Filter, Runge 

Kutta propagator
● code in Gitlab repository created November 2015

– 36k LOC, 285 files in 61 directories
– 609 commits, 113 MR
– 3 (main) developers
– file size:

● master branch 4.5M
● .git/ 230M

https://gitlab.cern.ch/acts/a-common-tracking-sw
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Workflow overviewWorkflow overview

git checkout master
git pull –ff
git checkout -b new_feature
<hack>
git fetch
git rebase -i origin/master 
git push -u origin new_feature

remote repository

local repository

clone/push

create merge request

review MR and approve

accept merge request

continuous integration
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This step will introduce 
a significant amount of 
extra work.

ask for refinements
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Create merge requestCreate merge request

short, meaningful title 
label WIP to prevent merge

detailed description

Who should manage this MR?

Who need to approve this MR?
- predefined list (project settings)
- individual users per MR
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Approve merge requestApprove merge request

- list of changed files
- coloured diff
- ability to comment on individual lines of code

- list of commits with message/
  build status
- links to individual commits

- general discussion
- addition of new 
commits
- results of builds
- discussions on diff

(no special permissions required)
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Accept merge requestsAccept merge requests

list of approvers

default message for 
merge commit
can be changed here

clean up

● assignees need commit rights for 
target branch
=> master permissions for 
protected branches

● limited number of people who can 
sign off on merge requests

● however, mostly administrative 
task

● largest part of work done by 
approvers during code review
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Help code reviewersHelp code reviewers
● code review = significant amount of work, (imho) totally worth it
● help code reviewers by using available tools for diagnostics
● ACTS uses Jenkins as CI framework

● multistage Jenkins project

● check all files for license statement
● apply coding style (if needed)

● run builds for different compilers

● perform static code analysis

● run unit tests
● perform test coverage analysis

● check for undocumented functions/classes
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The Jenkins viewThe Jenkins view

incremental builds

static code analysis
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So how does it look like?So how does it look like?

some files are missing 
license statements

we should fix some 
documentation issues

build result
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So how does it look like?So how does it look like?
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So how does it look like?So how does it look like?

test coverage
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Merge vs. rebase workflowMerge vs. rebase workflow
● Atlassian tutorial

merge rebase (ff-merge)

+ non-destructive operation
+ shows exactly what was done
+ can remove whole feature
   by reverting merge commit
- resolving conflicts leads to
  additional commits
- cluttered git log output

+ nice linear history
+ allows to cleanup commits
+ no additional commits for
   merges/ resolving conflicts
- destructive operation
- remove feature by reverting all
  individual commits

https://www.atlassian.com/git/tutorials/merging-vs-rebasing
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Merge vs. rebase workflowMerge vs. rebase workflow
● Atlassian tutorial

merge rebase (ff-merge)

+ non-destructive operation
+ shows exactly what was done
+ can remove whole feature
   by reverting merge commit
- resolving conflicts leads to
  additional commits
- cluttered git log output

+ nice linear history
+ allows to cleanup commits
+ no additional commits for
   merges/ resolving conflicts
- destructive operation
- remove feature by reverting all
  individual commits

semi-ff

+ nice linear history
+ allows to cleanup commits
+ no additional commits for
   merges/ resolving conflicts
+ remove feature by reverting
   merge commit
- destructive operation

all 3 strategies 
supported by GitLab

overhead due to extra commit
for CI tests is small

https://www.atlassian.com/git/tutorials/merging-vs-rebasing
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Merge vs rebase workflowMerge vs rebase workflow

● semi-ff merge workflow works fine for ACTS, though it required some getting used to
● requires advanced understanding of git

=> probably not feasible for projects with many developers with different levels of git experience
● compromise: recommend to rebase local feature branches before pushing them to the remote repo
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Using forks or branchesUsing forks or branches
● merge requests can be created from branches within in the same repository or from 

forks
● problems:

– fork relation is not inherited => no merge request to “grand-parent”

– Jenkins setup for forked workflow a bit more involved

– first push of a local branch to a fork triggers all JIRA references
=> duplicated comments in JIRA issues (one duplicate per
fork...CMS has >1.5k forks)

– forks do not really support a rebase workflow as the MR assignee needs
developers permissions on the fork (for doing a git push -f)

● advantages:

– different forks can have different CI setups

– different forks can have different roles/permissions/approver settings

=> for ACTS working with branches in one repo was found to be more convenient

official

fork

2. fork



08.06.16  17

SummarySummary
● git is great, MR are THE place for code review

● support of code reviewers with automated tools is essential
● best workflow depends on number and experience of developers
● requires discipline and some change in mentality:

– split development in many small work packages

– keep features branches concise and short-lived

– use one branch per feature
● GitLab provides (for us) all necessary features (Jenkins CI, JIRA integration)
● found some pitfalls:

– non-CERN users can't commit to gitlab.cern.ch

– make sure to set (otherwise, commits will be rejected)
git config --global user.email <login>@cern.ch

– ...
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Backup
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Changing habitsChanging habits
● branching/merging in git is simple, cheap and fast

=> use feature branches for developments/bug fixes
svn: merging can be a mess
=> develop on trunk

use tags to mark 
working state

(in ATLAS: tag not necessarily 
indicates working state)

git: branches are fun

current trunk often not stable
=> complicated to fix bugs

possible to develop in 
parallel (and independent 
of other changes)

master can be protected

merge requests
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Changing habits – another layerChanging habits – another layer
● branching/merging in git is simple, cheap and fast

=> use feature branches for developments/bug fixes
svn: merging can be a mess
=> develop on trunk

use tags to mark 
working state

(in ATLAS: tag not necessarily 
indicates working state)

git: branches are fun

current trunk often not stable
=> complicated to fix bugs

possible to develop in 
parallel (and independent 
of other changes)

master can be protected

merge requests

in ATLAS we currently have ONE svn repository per package
=> impossible to bundle logically connected changes in
     several packages into one commit

with git we may move to ONE repository for all packages
=> no problem committing changes spanning multiple
     packages

trunk in svn <=> one package while master in git <=> whole ATLAS software
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GitLab web interfaceGitLab web interface

Activity stream

Log with 
build status

code viewer network graph

commit diff
● manage permissions
● creating merge request
● ...
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GitLab web interfaceGitLab web interface

Activity stream

Log with 
build status

code viewer network graph

commit diff
● manage permissions
● creating merge request
● ...

● very nice web interface
● provides lots of useful features
● actively developed and improved quickly
● performance ok-ish
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CI overhead due to semi-ff workflowCI overhead due to semi-ff workflow

CI jobs from merge 
request

CI jobs for 
subsequent 
push to 
target branch
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