
git(Lab) experience from ACTS projectgit(Lab) experience from ACTS project
Software TIM, Glasgow

June 2016

08.06.16 2

The ACTS project in a nutshellThe ACTS project in a nutshell
● A Common Tracking Software:

– set of experiment independent tracking tools/algorithms
– e.g. geometry navigation, extrapolation, Kalman Filter, Runge

Kutta propagator
● code in Gitlab repository created November 2015

– 36k LOC, 285 files in 61 directories
– 609 commits, 113 MR
– 3 (main) developers
– file size:

● master branch 4.5M
● .git/ 230M

https://gitlab.cern.ch/acts/a-common-tracking-sw

08.06.16 3

Workflow overviewWorkflow overview

git checkout master
git pull –ff
git checkout -b new_feature
<hack>
git fetch
git rebase -i origin/master
git push -u origin new_feature

remote repository

local repository

clone/push

create merge request

review MR and approve

accept merge request

continuous integration

D
ev

el
op

er

robot

approve rs

as
sig

ne
e

Developer

ask for refinements

08.06.16 4

Workflow overviewWorkflow overview

git checkout master
git pull –ff
git checkout -b new_feature
<hack>
git fetch
git rebase -i origin/master
git push -u origin new_feature

remote repository

local repository

clone/push

create merge request

review MR and approve

accept merge request

continuous integration

D
ev

el
op

er

robot

approve rs

as
sig

ne
e

Developer

This step will introduce
a significant amount of
extra work.

ask for refinements

08.06.16 5

Create merge requestCreate merge request

short, meaningful title
label WIP to prevent merge

detailed description

Who should manage this MR?

Who need to approve this MR?
- predefined list (project settings)
- individual users per MR

08.06.16 6

Approve merge requestApprove merge request

- list of changed files
- coloured diff
- ability to comment on individual lines of code

- list of commits with message/
 build status
- links to individual commits

- general discussion
- addition of new
commits
- results of builds
- discussions on diff

(no special permissions required)

08.06.16 7

Accept merge requestsAccept merge requests

list of approvers

default message for
merge commit
can be changed here

clean up

● assignees need commit rights for
target branch
=> master permissions for
protected branches

● limited number of people who can
sign off on merge requests

● however, mostly administrative
task

● largest part of work done by
approvers during code review

08.06.16 8

Help code reviewersHelp code reviewers
● code review = significant amount of work, (imho) totally worth it
● help code reviewers by using available tools for diagnostics
● ACTS uses Jenkins as CI framework

● multistage Jenkins project

● check all files for license statement
● apply coding style (if needed)

● run builds for different compilers

● perform static code analysis

● run unit tests
● perform test coverage analysis

● check for undocumented functions/classes

08.06.16 9

The Jenkins viewThe Jenkins view

incremental builds

static code analysis

08.06.16 10

So how does it look like?So how does it look like?

some files are missing
license statements

we should fix some
documentation issues

build result

08.06.16 11

So how does it look like?So how does it look like?

08.06.16 12

So how does it look like?So how does it look like?

test coverage

08.06.16 13

Merge vs. rebase workflowMerge vs. rebase workflow
● Atlassian tutorial

merge rebase (ff-merge)

+ non-destructive operation
+ shows exactly what was done
+ can remove whole feature
 by reverting merge commit
- resolving conflicts leads to
 additional commits
- cluttered git log output

+ nice linear history
+ allows to cleanup commits
+ no additional commits for
 merges/ resolving conflicts
- destructive operation
- remove feature by reverting all
 individual commits

https://www.atlassian.com/git/tutorials/merging-vs-rebasing

08.06.16 14

Merge vs. rebase workflowMerge vs. rebase workflow
● Atlassian tutorial

merge rebase (ff-merge)

+ non-destructive operation
+ shows exactly what was done
+ can remove whole feature
 by reverting merge commit
- resolving conflicts leads to
 additional commits
- cluttered git log output

+ nice linear history
+ allows to cleanup commits
+ no additional commits for
 merges/ resolving conflicts
- destructive operation
- remove feature by reverting all
 individual commits

semi-ff

+ nice linear history
+ allows to cleanup commits
+ no additional commits for
 merges/ resolving conflicts
+ remove feature by reverting
 merge commit
- destructive operation

all 3 strategies
supported by GitLab

overhead due to extra commit
for CI tests is small

https://www.atlassian.com/git/tutorials/merging-vs-rebasing

08.06.16 15

Merge vs rebase workflowMerge vs rebase workflow

● semi-ff merge workflow works fine for ACTS, though it required some getting used to
● requires advanced understanding of git

=> probably not feasible for projects with many developers with different levels of git experience
● compromise: recommend to rebase local feature branches before pushing them to the remote repo

08.06.16 16

Using forks or branchesUsing forks or branches
● merge requests can be created from branches within in the same repository or from

forks
● problems:

– fork relation is not inherited => no merge request to “grand-parent”

– Jenkins setup for forked workflow a bit more involved

– first push of a local branch to a fork triggers all JIRA references
=> duplicated comments in JIRA issues (one duplicate per
fork...CMS has >1.5k forks)

– forks do not really support a rebase workflow as the MR assignee needs
developers permissions on the fork (for doing a git push -f)

● advantages:

– different forks can have different CI setups

– different forks can have different roles/permissions/approver settings

=> for ACTS working with branches in one repo was found to be more convenient

official

fork

2. fork

08.06.16 17

SummarySummary
● git is great, MR are THE place for code review

● support of code reviewers with automated tools is essential
● best workflow depends on number and experience of developers
● requires discipline and some change in mentality:

– split development in many small work packages

– keep features branches concise and short-lived

– use one branch per feature
● GitLab provides (for us) all necessary features (Jenkins CI, JIRA integration)
● found some pitfalls:

– non-CERN users can't commit to gitlab.cern.ch

– make sure to set (otherwise, commits will be rejected)
git config --global user.email <login>@cern.ch

– ...

08.06.16 18

Backup

08.06.16 19

Changing habitsChanging habits
● branching/merging in git is simple, cheap and fast

=> use feature branches for developments/bug fixes
svn: merging can be a mess
=> develop on trunk

use tags to mark
working state

(in ATLAS: tag not necessarily
indicates working state)

git: branches are fun

current trunk often not stable
=> complicated to fix bugs

possible to develop in
parallel (and independent
of other changes)

master can be protected

merge requests

08.06.16 20

Changing habits – another layerChanging habits – another layer
● branching/merging in git is simple, cheap and fast

=> use feature branches for developments/bug fixes
svn: merging can be a mess
=> develop on trunk

use tags to mark
working state

(in ATLAS: tag not necessarily
indicates working state)

git: branches are fun

current trunk often not stable
=> complicated to fix bugs

possible to develop in
parallel (and independent
of other changes)

master can be protected

merge requests

in ATLAS we currently have ONE svn repository per package
=> impossible to bundle logically connected changes in
 several packages into one commit

with git we may move to ONE repository for all packages
=> no problem committing changes spanning multiple
 packages

trunk in svn <=> one package while master in git <=> whole ATLAS software

08.06.16 21

GitLab web interfaceGitLab web interface

Activity stream

Log with
build status

code viewer network graph

commit diff
● manage permissions
● creating merge request
● ...

08.06.16 22

GitLab web interfaceGitLab web interface

Activity stream

Log with
build status

code viewer network graph

commit diff
● manage permissions
● creating merge request
● ...

● very nice web interface
● provides lots of useful features
● actively developed and improved quickly
● performance ok-ish

08.06.16 23

CI overhead due to semi-ff workflowCI overhead due to semi-ff workflow

CI jobs from merge
request

CI jobs for
subsequent
push to
target branch

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23

