
Event views

B. Wynne

06/06/16

2

Event views

The event views are the mechanism used to provide a subset of the whole event
data to an algorithm, without the algorithm needing to be modified
 - identical code can be used in HLT and offline, with no wrapper

A view presents the same interface as the EventStore, and is no more or less
than that: any geometry or provenance information must be added as a data
object within the view
 - a view is not necessarily an RoI or a TriggerElement

V
ie

w
 1

V
ie

w
 2

E
ve

nt

S
to

re

DATA

DATA

DATA

DATA

GeometryGeometry

DATA

3

Event views - plans

Long term: we need to decide precisely how we are going to use views

Short term: probably the best way to figure that out is to try using them more

We're experimenting with having one view encompass all of a particular type of
reconstruction (mu, egamma, etc.)

μ

j

j
μ

j

μ

j

j
μ

j

One view per RoI

DYNAMIC VIEWS:
Arbitrary number each event

More like today's HLT

One view for each RoI type

STATIC VIEWS:
Can be defined in configuration

η

θ

4

Event views demonstrator

The event views package (Control/AthViews) is part of the 20.8.X build and
contains three demostrators that all run the following workflow:

ViewMakeAlg

DFlowAlg1

DFlowAlg2

DFlowAlg3

ViewMergeAlg

DFlowAlg1

DFlowAlg2

DFlowAlg3

V
ie

w
 1

V
iew

 2

5

Event views demonstrator

You can run each demonstrator like this:

asetup 20.8.X-VAL,rel_6,here
athena --threads=N AthViews/StaticViews.py

This one tests EventViews directly, with the algorithm code updating its own
DataHandles to use a particular view:

StatusCode sc = myHandle.setStore(myView);

It doesn't look very much like what we'd actually want to do with views, but it
gives you an idea of what's needed to make them run

6

Event views demonstrator

You can run the next demonstrator the same way:

asetup 20.8.X-VAL,rel_6,here
athena --threads=N AthViews/StaticMigrationViews.py

Note the “Migration” part: this shows a simple (but not final!) approach for using
views with existing code

In the JO file, you tell an algorithm to run in a view by setting its view name
property:

job += CfgMgr.MyAlgorithm("my_algorithm_instance")
job.my_algorithm_instance.ViewName = “view1”

7

Algorithm differences

To try out views this way, you need to use a new algorithm base class:

#include "AthViews/AthViewAlgorithm.h"
class MyAlgorithm : public ::AthViewAlgorithm

You also need to make a small addition to the execute method:

StatusCode MyAlgorithm::execute() {
UseView();

Both this and the previous demonstrator show STATIC views, i.e. views that can
be defined at configuration time and do not change

8

Dynamic views

We might still want to create DYNAMIC EventViews, based on event information,
rather than statically at configuration time

This is shown in the third demonstrator, which prototypes a way to set
algorithms to run in one or more views without specific configuration:

asetup 20.8.X-VAL,rel_6,here
athena --threads=1 AthViews/GraphViews.py

This only requires the change to the algorithm base class

Note that here, it will only work with one thread

9

Algorithm base class

View behaviour is introduced via DataHandles

Therefore the algorithm base class needs to call the setStore() method for the
DataHandles before execute() begins

At the moment I do this in sysExecute()

Areas that need work:

 - Moving this behaviour from the test AthViewAlgorithm base class, into the
standard algorithm base class (get rid of UseView() method)

 - Making this work with re-entrant algorithms (doubt it'll be a show-stopper)

This is all that is needed for STATIC views. Discussion from here on concerns
DYNAMIC views only

10

DYNAMIC VIEW
DISCUSSION

11

Graph execution task

As I've mentioned before, dynamic views break a fundamental assumption of
GaudiHive/AthenaMT, namely that an algorithm is executed exactly once per
event

To get around this I have implemented a GraphExecutionTask, in contrast with
the AlgoExecutionTask that is used otherwise

 - Inherits from tbb::task

 - Sets algorithm context, and calls sysExecute()

 - Ignores algorithm states and data-dependencies

 - Acquires ownership of algorithm pointer at the moment of execution, not
beforehand (reschedules self if algorithm unavailable)

 - Supports subgraph of algorithms (currently just a sequence)

This component raises a lot of questions...

12

Scheduler stall behaviour

The first thing to note with the dynamic views demonstrator, which uses
GraphExecutionTasks, is that it doesn't work with more than one thread

This is because the GraphExecutionTasks exist outside the scheduler state
machine, and it has no idea that they are running

So, it can reach a point where there are no algorithms left to schedule except
for those that depend on the view results. Since it does not know that the
GraphExecutionTasks are running, it assumes that the dependencies cannot be
satisfied and declares a stall

Can/should we introduce a mechanism for an algorithm to tell the scheduler that
some task it doesn't know about is running?

There's possibly a connection here to GPU offloading: we're waiting for work
happening “elsewhere”

NECESSARY for dynamic views

13

Views and data dependencies

I've been banging on about this for years now, but it's still an open question:

How do we set up data dependencies for an algorithm that merges input from an
unknown number of views?

It's an algorithm that

 - Depends on an unknown (at config time) number of inputs

 - Must not be scheduled until every such input that will be made, has been
made (i.e. it can't run when the first view is finished, it must wait for all views)

A simple but unpleasant solution is for the algorithm to block internally until it
can read all the data it wants – can we do better?

Related, perhaps to the discussion Adam has been having about optional data
dependencies

IMPORTANT for dynamic views

14

The “I Will Create” notification?

I think I have a solution (untested: recent idea) to both of these problems

We need to tell the scheduler that there is work ongoing but not complete, and
we need to have an algorithm wait for an arbitrary amount of input

Perhaps we can solve both by having algorithms able to tell the scheduler that a
particular data object will be created at some unknown point in the future

 - Scheduler doesn't declare a stall if there are pending “I Will Create” flags

 - View merging algorithm can be postponed until all pending flags of the correct
name and type are cleared (potentially still misses a very late declaration)

15

Algorithms that exist but aren't scheduled

Another part of ignoring the state machine is that any algorithm that has been
instantiated will be run on the whole event, as well as in the dynamic view

Marking the algorithm as “executed” in the view is not sufficient, because it
might be scheduled before the view is processed (currently no way to do it
anyway)

At the moment I use the base class to introduce a “RequireView” property – if an
algorithm is run outside of a view it just returns SUCCESS immediately

Obviously this is a little hacky, and might get inefficient if there are very many
view algorithms: I've shown in the past that scheduling a lot of do-nothing
algorithms can cause problems

Can/should we create a way to add algorithms to the AlgPool without giving
them to the scheduler?

WOULD BE NICE for dynamic views

16

Algorithm dependencies within views

At the moment the GraphExecutionTask takes a list of algorithms in its
constructor, and executes them in order

It might be better/more useful to use the data dependency information already
collected to set this up

Depends a bit on how we want to use the views, but potentially we might want

 - Some set of algorithms (with deps?) from config file

 - Arbitrary bag of algorithms (throw them in, let them sort dependencies)

 - One algorithm and all possible downstream (collect everything)

 - Everything needed to produce some output?

WOULD BE NICE for dynamic views

17

Summary and plans

Testing EventViews

 - We have two possible models for using event views, dynamic and static
 - Both have working demonstrators, ready to be used with migration code
 - Priority to use them, and decide what we want to do

Static EventViews

 - Defined at configuration time
 - Sufficient for the approach with one view per type of reconstruction
 - Only require modifications to the algorithm base class, minimal disruption

Dynamic EventViews

 - Create 0-N of them per event
 - One view per Region of Interest, much like the current HLT
 - Require changes to the scheduler

Dynamic views are definitely more work, but might also be more useful, and
some of the changes could be applicable beyond the HLT

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17

