
HLT in athena MT
T. Bold AGH UST Krakow  

for HLT s/w upgrade group

1

Why it is good to follow this path?

Offline framework offers (rightly) only few components:  
Service, Algorithm, Tool  
 - goal is to cast HLT task into this components

• Maintenance of trigger framework requires significant effort

• Would be even more significant for concurrent events processing

• High rejection power available in offline codes

• We already do that at EF for exact the same reason  
(egamma PIDs, b-jet taggers)

• Synergy between fast/early stage HLT algorithms and offline would be

valuable (offline needs to get faster as well)

2

HLT steering = offline algorithms

3

Menu as a set of plain algorithms

• Tricky part: interplay of the reco. and the menu.

• We retain concept of the chain - but it is not a functional object - just a concept.

• Step of the chain: needs an input (decisions) and produces an output (reduced
set of positive decisions per chain/per RoI).

• The algorithmic logic in the menu is fairly simple  
1) counting, 2) counting unique RoIs, 3) prescaling == generalised
implementation

• Menu algorithm == Step of set of similar chains  
→ alg. implements one step e15_tight_calo, e15_loose_calo, 2e15_loose_calo counting

• Menu: assembly of consistently configured menu algorithms

• +With them: testing will be simplified → FEX alg(s), Hypo alg(s), menu alg. ==
completely defined job

Menu as an algorithm - trial implementation

FakeRoI FakeCTP

MenuAlg#CaloStep

Generates RoI objects +
TrigComposite holding L1
decisions per RoI
(thressholds passed)

Activates chains

go/nogo decision per
chain

go/nogo decision per
chain

go/nogo decision per RoI

go/nogo decision per RoI

Algorithm has two inputs, and generates two outputs.

Decisions: per-chain and per RoI

Fake bootstrap generators
 - fake RoI maker - to place desired
number & types of RoIs in each event
 - fake CTP make - activates desired
“chains” for each event
Both configured from text files and
require no input data - test jobs takes
about 30s.

5

for (chain: chains_handled_by_this_algo)

 if (not chainSurvivedPreviousStage(chain)) continue; // keep rejected

 if (requirement_satisfied(chain))

 chainDecision->setPassed();

 else: chainDecision->setFailed();

for (roi: rois)

 if (contributedToPassedChain(roi))

 roiDecision->setPassed();

MenuAlg::exdecute (pseudo code)

We would be free to deliver other implementations
overlap checking

…

Rejection

6

https://svnweb.cern.ch/trac/atlasoff/browser/Trigger/TrigSteer/ViewAlgs/trunk/src/MenuAlg.cxx

Prescaling

from ViewAlgs.ViewAlgsConf import PrescaleDecision
ps = PrescaleDecision("HLTChainsPrescaling")
ps.Prescales=["HLT_e3 20.99", "HLT_e7 2.5"]
ps.InputChainDecisions = "CTPDecisions"
ps.OutputChainDecisions = "ChainsPassingAfterPS"
ps.OutputChainDecisionsAux = "ChainsPassingAfterPSAux."
topSequence += ps

• Decides if chain is interesting

• PrescaleDecision (see ViewAlgs/src for the code)

• demo config:

Chains in input

Reduced set of chains  
 as output

Testing: TestFEXAlg TestHypoAlg

FEXAlg

HypoAlg
MenuAlgHypoTools

For simplicity:
Hypo instance name == TE name

• FEX algo (looking like producer of CaloClusters).
• Hypo algo works on clusters and decides:  

 is the threshold passed?
• One algorithm serves many hypotheses verification

• cuts outsourced to TestHypoTool(s) — we think this is a
migration path.

• One algorithm == no need to caching
• hypo tools executed explicitly by the HypoAlg.  

- no sequence needed for that
• Wiring FEX and Hypo via R/W handle dependencies

Assembled menu

FakeRoI

FakeCTP

TestFEXAlg#L2CaloReco

TestHypoAlg#L2CaloHypo

HLTChainsPrescaling

HypoTools

MenuAlg#DropPrescaled

roi
schains

chains roi
s

MenuAlg#MenuAfterL2Calo

roi
schains

chains roi
s

RoIsDumper#DumpAfterL2Calo

TestFEXAlg#EFCaloReco
MenuAlg#MenuAfterEFCalo

roi
schains

chains roi
s TestHypoAlg#EFCaloHypo

TestRoiMerge#EFCaloMerger

New package ViewAlgsTest
hosts test algs & test itself

9

L1 Calo RoI decoder

Wiring EDM object - incarnation of HLT navigation

L1 EMRoI

TC
DropPrescaled

L2CaloReco

TC

TC

Clusters L2CaloHypo
TC

Unique way of accessing
objects through the ELs in
TC (see the red path)

TC == TrigComposite - yellow ones in
addition to the links contain decisions of

Hypo algorithms

10

Advanced aspects RoIs merging/splitting

Studies ongoing

It may be/is beneficial to merge many RoIs to do one reco. step: jets, b-jets PV,

overlapping reco.

Prototype algorithm in place (see TestViewAlgs):

• merges RoIs according to configured rules

• produces new RoIs (super RoI obj)

• objects are linked back to the source

• splitting explores this links back to decompose results to original RoIs

11

Merging and Splitting

L2Alg

Merging

Tracking Alg

Splitting

L1Decoder

EFTrack Match

Composite RoIs

L1MU L1EM

CaloRoIs MuonRoIs

Francesca Pastore

12

A more complex menu = relation to HLT chains

• Splitting chains from algs.: attempted in python:

• This information is then feed back to MenuAlgorithms

• Translation from HLT XML config would require:

• re-arrangement of the signatures info into Menu Alg. properties

• cast of chain properties like. PS to a appropriate alg. properties

• mapping of chain step —> Menu Alg. should not be needed i.e. only one
Menu Alg. is responsible for L2_3GeVCaloEtCut and this can be discovered
in python

chains = ChainsList()
chains + Chain("HLT_e3", "L1_EM3", 20.99, {"DropPrescaled": "EM3 x 1",
 "MenuL2CaloStep": "L2_3GeVCaloEtCut x 1",
 "MenuEFCaloStep": "EF_3GeVCaloEtCut x 1"})

menuRun dependencies graph

class: TestHypoAlg
CaloMatchingHypo

MenuAlg
MenuCaloTrackingStep

HypoDecisions

OutputDecisions

class: DumpDecisions
CaloTrackingDumper

OutputDecisions

OutputDecisions

class: TestHypoAlg
L2CaloHypo

MenuAlg
MenuL2CaloStep

HypoDecisions

OutputDecisions

class: DumpDecisions
L2CaloRoIsDumper

OutputDecisions

OutputDecisions

class: FakeRoI
muonFakeRoI

MenuAlg
muonRoIsAfterPrescaling

HypoDecisions

OutputDecisions

InputChainDecisions

OutputChainDecisions

class: TestFEXAlg
EFCaloReco

RoIsContainer

OutputDecisions

class: TestSplitAlg
SplitCaloRoIs

ReferenceProxyContainer

OutputDecisions

MenuAlg
MenuEFCaloStep

InputChainDecisions

OutputChainDecisions

class: TestMergeAlg
MergeAllRoIs

InpuCollNames

OutputProxyContainer

class: TestHypoAlg
EFCaloHypo

InputProxyContainer

OutputProxyContainer

class: TestFEXAlg
L2CaloReco

InputProxyContainer

OutputProxyContainer

class: TestFEXAlg
CaloMatchingFex

RoIsContainer

SplitProxyContainer

class: TestSplitAlg
SplitMuonRoIs

class: FakeRoI
caloFakeRoI

MenuAlg
caloRoIsAfterPrescaling

HypoDecisions

OutputDecisions

HypoDecisions

OutputDecisions

class: DumpDecisions
EFCaloRoIsDumper

OutputDecisions

OutputDecisions

class: TestFEXAlg
L2MuonReco

class: TestHypoAlg
L2MuonHypo

InputProxyContainer

OutputProxyContainer

class: TestFEXAlg
MergedTracking

RoIsContainer

MergedProxyContainer

class: FakeCTP
FakeCTP

class: PrescaleDecision
HLTChainsPrescaling

InputChainDecisions

OutputDecisions

RoIsContainer

OutputDecisions

MenuAlg
MenuL2MuonStep

InputChainDecisions

OutputChainDecisions

InputProxyContainer

OutputProxyContainer

InputProxyContainer

OutputProxyContainer

InputProxyContainer

OutputProxyContainer

ReferenceProxyContainer

OutputDecisions

InpuCollNames

OutputProxyContainer

InputChainDecisions

OutputChainDecisions

InputChainDecisions

OutputChainDecisions

HypoDecisions

OutputDecisions

InputChainDecisions

OutputChainDecisions

RoIsContainer

OutputDecisions

14

This is extracted from python
 via convenience methods  
connectAlgorithmsIO
Would be great if handles expose:
- r_or_w
- handled coll. type

Summary & outlook
• Prototyping helped understanding if HLT can be cast to offline

• with caveats: (no RoIs, no summary algo. yet, hacked ReadHandleArray)
it seems possible to perform basic HLT tasks in purely offline framework

• Next steps for prototype:

• Incorporate views

• Expand set of menu utility algos to be able to arrive at final  
YES/NO + streams

• Address coherence with existing HLT (adiabatic migrations of hypos,
reuse of menu)

• Trigger analysis tools - keep TDT interface

