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Why it is good to follow this path?

Offline framework offers (rightly) only few components:  
Service, Algorithm, Tool  
  - goal is to cast HLT task into this components

• Maintenance of trigger framework requires significant effort   

• Would be even more significant for concurrent events processing 

• High rejection power available in offline codes 

• We already do that at EF for exact the same reason  
(egamma PIDs, b-jet taggers) 

• Synergy between fast/early stage HLT algorithms and offline would be 

valuable (offline needs to get faster as well)
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HLT steering = offline algorithms
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Menu as a set of plain algorithms

• Tricky part: interplay of the reco. and the menu.  

•   We retain concept of the chain - but it is not a functional object - just a concept. 

• Step of the chain: needs an input (decisions) and produces an output (reduced 
set of positive decisions per chain/per RoI). 

• The algorithmic logic in the menu is fairly simple  
1) counting, 2) counting unique RoIs,  3) prescaling == generalised 
implementation 

• Menu algorithm == Step of set of similar chains   
→  alg. implements one step e15_tight_calo, e15_loose_calo, 2e15_loose_calo counting 

• Menu: assembly of consistently configured menu algorithms 

• +With them: testing will be simplified → FEX alg(s), Hypo alg(s), menu alg. == 
completely defined job



Menu as an algorithm - trial implementation

FakeRoI FakeCTP

MenuAlg#CaloStep

Generates RoI objects + 
TrigComposite holding L1 
decisions per RoI 
(thressholds passed) 

Activates chains

go/nogo decision per 
chain

go/nogo decision per 
chain

go/nogo decision per RoI

go/nogo decision per RoI

Algorithm has two inputs, and generates two outputs. 

Decisions: per-chain and per RoI

Fake bootstrap generators 
  - fake RoI maker - to place desired 
number & types of RoIs in each event 
  - fake CTP make - activates desired 
“chains” for each event 
Both configured from text files and 
require no input data - test jobs takes 
about 30s.
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for ( chain: chains_handled_by_this_algo ) 

   if ( not chainSurvivedPreviousStage(chain) ) continue; // keep rejected 

   if ( requirement_satisfied(chain) ) 

      chainDecision->setPassed(); 

    else: chainDecision->setFailed(); 

for ( roi: rois )  

  if ( contributedToPassedChain(roi) ) 

     roiDecision->setPassed(); 

MenuAlg::exdecute (pseudo code)

We would be free to deliver other implementations 
overlap checking 

…

Rejection
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https://svnweb.cern.ch/trac/atlasoff/browser/Trigger/TrigSteer/ViewAlgs/trunk/src/MenuAlg.cxx


Prescaling

from ViewAlgs.ViewAlgsConf import PrescaleDecision 
ps  = PrescaleDecision("HLTChainsPrescaling") 
ps.Prescales=["HLT_e3 20.99", "HLT_e7 2.5"] 
ps.InputChainDecisions = "CTPDecisions" 
ps.OutputChainDecisions = "ChainsPassingAfterPS" 
ps.OutputChainDecisionsAux = "ChainsPassingAfterPSAux." 
topSequence += ps

• Decides if chain is interesting 

•  PrescaleDecision (see ViewAlgs/src for the code)  

• demo config:

Chains in input

Reduced set of chains  
 as output



Testing: TestFEXAlg TestHypoAlg

FEXAlg

HypoAlg
MenuAlgHypoTools

For simplicity: 
Hypo instance name == TE name

• FEX algo (looking like producer of CaloClusters).  
• Hypo algo works on clusters and decides:  

 is the threshold passed?  
• One algorithm serves many hypotheses verification 

• cuts outsourced to TestHypoTool(s) — we think this is a 
migration path. 

• One algorithm == no need to caching 
• hypo tools executed explicitly by the HypoAlg.  

-  no sequence needed for that 
• Wiring FEX and Hypo via R/W handle dependencies



Assembled menu

FakeRoI

FakeCTP

TestFEXAlg#L2CaloReco

TestHypoAlg#L2CaloHypo

HLTChainsPrescaling

HypoTools

MenuAlg#DropPrescaled

roi
schains

chains roi
s

MenuAlg#MenuAfterL2Calo

roi
schains

chains roi
s

RoIsDumper#DumpAfterL2Calo

TestFEXAlg#EFCaloReco
MenuAlg#MenuAfterEFCalo

roi
schains

chains roi
s TestHypoAlg#EFCaloHypo

TestRoiMerge#EFCaloMerger

New package ViewAlgsTest 
hosts test algs & test itself
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L1 Calo RoI decoder

Wiring EDM object - incarnation of HLT navigation

L1 EMRoI

TC
DropPrescaled

L2CaloReco

TC

TC

Clusters L2CaloHypo
TC

Unique way of accessing 
objects through the ELs in 
TC (see the red path)

TC == TrigComposite - yellow ones in 
addition to the links contain decisions of 

Hypo algorithms
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Advanced aspects RoIs merging/splitting

Studies ongoing

It may be/is beneficial to merge many RoIs to do one reco. step: jets, b-jets PV, 

overlapping reco.  

Prototype  algorithm in place (see TestViewAlgs): 

• merges RoIs according to configured rules 

• produces new RoIs (super RoI obj) 

• objects are linked back to the source 

• splitting explores this links back to decompose results to original RoIs
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Merging and Splitting

L2Alg

Merging

Tracking Alg

Splitting

L1Decoder

EFTrack Match

Composite RoIs

L1MU L1EM

CaloRoIs MuonRoIs

Francesca Pastore
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A more complex menu = relation to HLT chains

• Splitting chains from algs.: attempted in python:  

• This information is then feed back to MenuAlgorithms 

• Translation from HLT XML config would require: 

• re-arrangement of the signatures info into Menu Alg. properties 

• cast of chain properties like. PS to a appropriate alg. properties 

• mapping of chain step —> Menu Alg. should not be needed i.e. only one 
Menu Alg. is responsible for L2_3GeVCaloEtCut and this can be discovered 
in python

chains = ChainsList() 
chains + Chain("HLT_e3", "L1_EM3", 20.99, {"DropPrescaled": "EM3 x 1",  
                                              "MenuL2CaloStep": "L2_3GeVCaloEtCut x 1",  
                                              "MenuEFCaloStep": "EF_3GeVCaloEtCut x 1"}) 



menuRun dependencies graph

class: TestHypoAlg
CaloMatchingHypo

MenuAlg
MenuCaloTrackingStep

HypoDecisions

OutputDecisions

class: DumpDecisions
CaloTrackingDumper

OutputDecisions

OutputDecisions

class: TestHypoAlg
L2CaloHypo

MenuAlg
MenuL2CaloStep

HypoDecisions

OutputDecisions

class: DumpDecisions
L2CaloRoIsDumper

OutputDecisions

OutputDecisions

class: FakeRoI
muonFakeRoI

MenuAlg
muonRoIsAfterPrescaling

HypoDecisions

OutputDecisions

InputChainDecisions

OutputChainDecisions

class: TestFEXAlg
EFCaloReco

RoIsContainer

OutputDecisions

class: TestSplitAlg
SplitCaloRoIs

ReferenceProxyContainer

OutputDecisions

MenuAlg
MenuEFCaloStep

InputChainDecisions

OutputChainDecisions

class: TestMergeAlg
MergeAllRoIs

InpuCollNames

OutputProxyContainer

class: TestHypoAlg
EFCaloHypo

InputProxyContainer

OutputProxyContainer

class: TestFEXAlg
L2CaloReco

InputProxyContainer

OutputProxyContainer

class: TestFEXAlg
CaloMatchingFex

RoIsContainer

SplitProxyContainer

class: TestSplitAlg
SplitMuonRoIs

class: FakeRoI
caloFakeRoI

MenuAlg
caloRoIsAfterPrescaling

HypoDecisions

OutputDecisions

HypoDecisions

OutputDecisions

class: DumpDecisions
EFCaloRoIsDumper

OutputDecisions

OutputDecisions

class: TestFEXAlg
L2MuonReco

class: TestHypoAlg
L2MuonHypo

InputProxyContainer

OutputProxyContainer

class: TestFEXAlg
MergedTracking

RoIsContainer

MergedProxyContainer

class: FakeCTP
FakeCTP

class: PrescaleDecision
HLTChainsPrescaling

InputChainDecisions

OutputDecisions

RoIsContainer

OutputDecisions

MenuAlg
MenuL2MuonStep

InputChainDecisions

OutputChainDecisions

InputProxyContainer

OutputProxyContainer

InputProxyContainer

OutputProxyContainer

InputProxyContainer

OutputProxyContainer

ReferenceProxyContainer

OutputDecisions

InpuCollNames

OutputProxyContainer

InputChainDecisions

OutputChainDecisions

InputChainDecisions

OutputChainDecisions

HypoDecisions

OutputDecisions

InputChainDecisions

OutputChainDecisions

RoIsContainer

OutputDecisions
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This is extracted from python 
 via convenience methods  
connectAlgorithmsIO 
Would be great if handles expose: 
- r_or_w 
- handled coll. type 



Summary & outlook
• Prototyping helped understanding if HLT can be cast to offline  

• with caveats: (no RoIs, no summary algo. yet, hacked ReadHandleArray) 
it seems possible to perform basic HLT tasks in purely offline framework 

• Next steps for prototype:  

• Incorporate views 

• Expand set of menu utility algos to be able to arrive at final  
YES/NO + streams 

• Address coherence with existing HLT (adiabatic migrations of hypos, 
reuse of menu) 

• Trigger analysis tools - keep TDT interface


