Monitoring for
HLT and oftline

T. Bold AGH UST Krakow
for HLT s/w upgrade group




Monitoring In
re-entrant HLT code

NO to storing monitored gquantities in class
attributes

 thatis what we have now

Functionally similar to existing HLT code
Available also for offline alg/tools

* pbecause HLT would use them w/o wrapping



Work done with Piotr Sarna

ldea

* Separate histograms management
e this is boller plate code:

e create (decide on names, binning, actual implementation
.e. TH17?),

* handle (registration)
e from histogram filling
* always specific to the alg/tool

e |.e. when is Fill operation happening



Monitored variaples

* |In order to make monitoring ubiquitous but not invasive
information should be silently extracted from any variable (i.e.
local temporary)

e Extraction may happen at:
e every assignment
e end of lifetime (this is what we have in HLT now)

e on explicit fill

* This would need to be policy decided for every variable
iIndependently



Monitored Variables in code

.:execute() {
Monitored<double> pt = m_monitoringTool->create _monitored<double>(“pt”, 0, FillAtAssign);

pt =7.12; // here histogram filling occurs
ptSum = ptSum + pt; // ptSum is a plain double here increased by value in “pt”

* [emporary creation associates variable with observer
(histogram filler/proxy)

* name (string) default value and policy are decided then

* from then it is like every other “double” (we can make is as
alike as we want via. operators overload)



Histograms management

* MonitoringTool fucntions

e construction of monitored var.

Monitored<T> create_monitored(const std::string& id,

const T& default_value = {},
FillPolicy fillPolicy = FillDisabled)

* creation with histogram proxies pre-acquired

Monitored<T> create_monitored(std::shared_ptr<StorageProxy> monitored_proxy,

const T& default_value = {},
FillPolicy fillPolicy = FillDisabled)




Configuring MonitoringTool

Hists configuration:
from L1Decoder.L.1DecoderConf import MonitoringTool

tool = MonitoredTool('monitoredTool’)

tool.Histograms = |
‘eta, NoStorage',
'pt, /monitored, exampleTitle, 100, 0, 100']

* For each variable a histogram can be defined

« Optional NoStorage would mean: not interesting, no histogram no overheads

 There could be only one implementation

e Simplify maintenance i.e. move to LWHist of OH::Hist would be straightforward

* Thread safety in one place, muttexing Fill or accumulation ... easy to
introduce/change, LB awareness



Configuration options

« When no configuration for histogram:
e provide NoStorage proxy
o this would help in migration

* nO side effects after replacing variable XYZ with the Monitored<>
XYZ

* |t would allow to switch/on off monitoring entirely: Histograms=(]
e Other option is to complain if:
e some variables are not monitored (alert at create_monitored)

* histograms never used (tricky as it is data dependent) i.e. decoding issues
bookkeeping histogram



Status

Functional code in SVN (fine tuning pending)
Test jobs indicate viability of this approach (timing measurements will follow)
Discussed with DQ (Peter Onyisi) - follow up path established
In summer we will have ready to go implementation in AthenaMonitoring
* On us will be to advocate usage of this tool everywhere

 HLT will be easy to convince because we have now similar thing,
new approach offers certain simplifications (FillAtAssign), can monitor
tools & services

* Offline should follow too: reduce boiler plate in monitoring, when
offline code in HLT no wrapping needed to have online monitoring



