
Monitoring for
HLT and offline

T. Bold AGH UST Krakow
for HLT s/w upgrade group

Monitoring in  
re-entrant HLT code

• NO to storing monitored quantities in class
attributes

• that is what we have now

• Functionally similar to existing HLT code

• Available also for offline alg/tools

• because HLT would use them w/o wrapping

Idea
• Separate histograms management

• this is boiler plate code:

• create (decide on names, binning, actual implementation
i.e. TH1?),

• handle (registration)

• from histogram filling

• always specific to the alg/tool

• i.e. when is Fill operation happening

Work done with Piotr Sarna

Monitored variables
• In order to make monitoring ubiquitous but not invasive

information should be silently extracted from any variable (i.e.
local temporary)

• Extraction may happen at:

• every assignment

• end of lifetime (this is what we have in HLT now)

• on explicit fill

• This would need to be policy decided for every variable
independently

Monitored Variables in code

• Temporary creation associates variable with observer
(histogram filler/proxy)

• name (string) default value and policy are decided then

• from then it is like every other “double” (we can make is as
alike as we want via. operators overload)

::execute() {
…
Monitored<double> pt = m_monitoringTool->create_monitored<double>(“pt”, 0, FillAtAssign);
pt = 7.12; // here histogram filling occurs
ptSum = ptSum + pt; // ptSum is a plain double here increased by value in “pt”
…

Histograms management

• MonitoringTool fucntions

• construction of monitored var.

• creation with histogram proxies pre-acquired

Monitored<T> create_monitored(const std::string& id,  
const T& default_value = {},
FillPolicy fillPolicy = FillDisabled)

Monitored<T> create_monitored(std::shared_ptr<StorageProxy> monitored_proxy,  
const T& default_value = {},  
FillPolicy fillPolicy = FillDisabled)

Configuring MonitoringTool

• For each variable a histogram can be defined

• Optional NoStorage would mean: not interesting, no histogram no overheads

• There could be only one implementation

• Simplify maintenance i.e. move to LWHist of OH::Hist would be straightforward

• Thread safety in one place, muttexing Fill or accumulation … easy to
introduce/change, LB awareness

Hists configuration:
from L1Decoder.L1DecoderConf import MonitoringTool
tool = MonitoredTool('monitoredTool')
tool.Histograms = [
 'eta, NoStorage',
 'pt, /monitored, exampleTitle, 100, 0, 100']

Configuration options
• When no configuration for histogram:

• provide NoStorage proxy

• this would help in migration

• no side effects after replacing variable XYZ with the Monitored<>
XYZ

• It would allow to switch/on off monitoring entirely: Histograms=[]

• Other option is to complain if:

• some variables are not monitored (alert at create_monitored)

• histograms never used (tricky as it is data dependent) i.e. decoding issues
bookkeeping histogram

Status
• Functional code in SVN (fine tuning pending)

• Test jobs indicate viability of this approach (timing measurements will follow)

• Discussed with DQ (Peter Onyisi) - follow up path established

• In summer we will have ready to go implementation in AthenaMonitoring

• On us will be to advocate usage of this tool everywhere

• HLT will be easy to convince because we have now similar thing,  
new approach offers certain simplifications (FillAtAssign), can monitor
tools & services

• Offline should follow too: reduce boiler plate in monitoring, when
offline code in HLT no wrapping needed to have online monitoring

