Experience GoogleTest Framework for an ATLAS
Package

P Sherwood

8 June 2016

Context

> ‘New package’ - TrigHLT JetHypo.Replaces many Hypo Algos
from TrigJetHypo with a single hypo + helper classes written
in plain C4++.

» Simple helper classes are combined to perform complex
algorithms.

» Helper classes are used in more than one hypo algorithm
(code reuse).

» Having simple (non-framework) classes makes instantiation
and this testing easier.

> Test package TrigHLT JetHypoUnitTests - code updates
manifestly independent of TrigHLT JetHypo

Unit Tests

Test the detailed behaviour of functions.

v

v

Test: a short piece of code that runs the function under test,
supplying it with the necessary arguments. Verifies expected
behaviour via asserts.

v

White box testing with GoogleTest and Google Moc
~ 50 tests written for TrigHLT JetHypo

v

v

Integrated into the cmake builds

Google Test

Takes care of the chore of looking after tests

» Runs tests independently - a test failure does no prevent later
tests from running

> allows grouping of tests into suites - allows eg switching on
and off groups of tests

» Collects and reports results

» Shared setup and teardown functions - efficiency gain

Documentation describes-

» many details on codeing strategies that facilitate testing

» how to setup and run the framework

Personal Impressions

Easy to use, quick to add tests, similar to other frameworks
enciuntered (eg PyUnit)

Mock Objects

» When a function takes an instance as an argument pass it an
alternative (mock) with the same interface.

» The mock object may be required to respond to method calls.
This can be explicitly programmed to provide the response
desired to test the functions behaviour.

» Mock objects can note which of its methods are called, and in
which order.

» Polymorphism (eg interfaces or templates) is required - the
functions need to be able to accept real and mock objects.

Black box testing?

» Black box testing - test only by varying inputs, and observing
outputs

» Polymorphism not needed

» Hich code coveraoce ic mare difficiily +o achieve

Google Mock

» provides mechanisms for writing mock object given an
interface.

» wide range of monitoring functionality available

> responses of the mock object are programmable

» monitoring performed is programmable

» This style of testing without such tools is extremely tedious.

> C++ is very expressive, so tricky cases can arise.Plenty of
help on the web.

» Works well with Google Test

Code Example - a jet cleaner (really a jet rejector)

bool LlpCleaner: :operator() (const pHypoJet& jet) const {
/* make cuts on jet attributes to select jets from long-lived p
float fsmJet;
float nelet;
if(jet -> getAttribute("FracSamplingMax", fsmJet)){
if(jet -> getAttribute("NegativeE", neJet)){
if (fsmJet > m_fSampMaxLlpThreshold &&
std::abs(neJet) > m_negELlpThreshold){isClean = false;}
} else {
throw UncleanableJet("Cleaner Cannot retrieve NegativeE");
I
} else {
throw UncleanableJet("Cleaner Cannot retrieve FracSamplingMa

}

Example Test - one of many needed for full coverage
LIpCleaner

> LlpCleaner: one of a number of jet cleaner function objects.

> test single functionality: does the cleaner throw an exception
if a an non-existent jet moment is requested?

> passes an instrumented mock jet via an interface

Test name Instance
— TEST(L1pCleanerTest, ThrowsOnUncleanablelet) {
o] MockJet jet;
testee LlpCleaner cleaner(l., 1., 1., 1., 1.); anvarg -herelJet

epare mock EXPECT_CALL(jet, getAttribute("FracSamplingMax", _))
.WillOnce(DoAll(SetArgReferee<1>(0.9), Return(false]

method
i/lo argument (norrconst reference) code under test throws
when mock jet returns false
call EXPECT_THROW(cleaner(&jet), Uncleanablelet);

} Check that the expected exception is thrown

Screen shot - end of output

L 0K]
[RUN]
L 0K 1]
[RUN]
L 0K 1
[RUN]
L 0K]
[RUN]
L 0K 1]
[--mmmmmme-]
ffffffffff]
[RUN]
L 0K]
[RUN]
L 0K 1]
[--mmmmme-]
[---------- 1
[RUN]
L 0K]
[--mmmmme-]
[----mmme]
[RUN]
L 0K]
[------m--- 1

K
[PASSED

EtaEtConditionTest.artefacts (@ ms)
EtaEtConditionTest.accepts
EtaEtConditionTest.accepts (@ ms)
EtaEtConditionTest.belowEtaMinCut
EtaEtConditionTest.belowEtaMinCut (@ ms)
EtaEtConditionTest.aboveEtaMaxCut
EtaEtConditionTest.aboveEtaMaxCut (@ ms)
EtaEtConditionTest.belowEtCut
EtaEtConditionTest.belowEtCut (@ ms)

5 tests from EtaEtConditionTest (@ ms total

2 tests from TightCleanerTest
TightCleanerTest.SimpleThresholds
TightCleanerTest.SimpleThresholds (@ ms)
TightCleanerTest.ThrowsOnUncleanablelet
TightCleanerTest.ThrowsOnUncleanableJet (1
2 tests from TightCleanerTest (1 ms total)

1 test from FlowNetworkTest
FlowNetworkTest.SimpleTest
FlowNetworkTest.SimpleTest (@ ms)

1 test from FlowNetworkTest (@ ms total)

1 test from FlowEdgeTest
FlowEdgeTest.DefaultConstructor
FlowEdgeTest.DefaultConstructor (@ ms)
1 test from FlowEdgeTest (@ ms total)

Global test environment tear-down
49 tests from 11 test cases ran. (8 ms totc
49 tests.

Why write unit tests?

> they are very effective for identifying certain kinds of bugs
> the tests are close to the code, as opposed to integration tests

» my package: take milliseconds to run - instantaneous turn
around

» allow responsible refactoring of code - integration tests are
too coarse

Down side?
More code to write and maintain. The tools used help reduce this
load.

Things that make function and class testing easier

(Very) short functions and testability

» Devising inputs to explore all code paths easier.
» Determining the correct output is easier.

» Code written as several short functions rather than a single
long function is often more flexible - je easier to modify in the
future (overriding, reuse, template pattern....)

» BUT have more functions that interact.

The 7 4+ 2 rule becomes natural, rather than only a Guru
admonition.

Things that make unit testing more difficult

» many paths through the function
> use of globals
> object creation within a function:
» Instantiation within a function body may lead to more code

paths
» Makes using mock objects more difficult.

» prefer: object creation in a separate function, pass in object

» prefer: passing in an object to be used as an attribute rather
than instantiating in the constructor body.

Cmake integration

» Building the tests in Cmake has been added by A
Krasznahorkay

» instructions for building with cmake can be found at
https://twiki.cern.ch/twiki/bin/viewauth /AtlasComputing/CMakeTe

> very easy instructions to follow

» Look at $SVN-
ROOT /Trigger/ TriggerHypothesis/ TrigHLT JetHypoUnit Tests
for the cmakelist.txt

» after running make, make test runs the tests - little output if
all pass

» the command ‘ctest —verbose’ shows full output

Final Comments

» Unit tests provide fine scale testing.

» with very short functions, feels a bit like checking code with a
debugger

» could be used to catch many bugs much faster than with
integration tests

» maybe difficult to see bug effects in integration tests

» do not require the resources (machine and human) of
integration tests

» does not replace integration tests!

> coverage measurements are needed to guide design of further
tests

» the test package has integrated into the CMAKE builds - very
convenient + automatable.

