
1/14

Experience GoogleTest Framework for an ATLAS
Package

P Sherwood

8 June 2016

2/14

Context

I ‘New package’ - TrigHLTJetHypo.Replaces many Hypo Algos
from TrigJetHypo with a single hypo + helper classes written
in plain C++.

I Simple helper classes are combined to perform complex
algorithms.

I Helper classes are used in more than one hypo algorithm
(code reuse).

I Having simple (non-framework) classes makes instantiation
and this testing easier.

I Test package TrigHLTJetHypoUnitTests - code updates
manifestly independent of TrigHLTJetHypo

3/14

Unit Tests

I Test the detailed behaviour of functions.

I Test: a short piece of code that runs the function under test,
supplying it with the necessary arguments. Verifies expected
behaviour via asserts.

I White box testing with GoogleTest and Google Moc

I ≈ 50 tests written for TrigHLTJetHypo

I Integrated into the cmake builds

4/14

Google Test
Takes care of the chore of looking after tests

I Runs tests independently - a test failure does no prevent later
tests from running

I allows grouping of tests into suites - allows eg switching on
and off groups of tests

I Collects and reports results

I Shared setup and teardown functions - efficiency gain

Documentation describes-

I many details on codeing strategies that facilitate testing

I how to setup and run the framework

Personal Impressions

Easy to use, quick to add tests, similar to other frameworks
enciuntered (eg PyUnit)

5/14

Mock Objects

I When a function takes an instance as an argument pass it an
alternative (mock) with the same interface.

I The mock object may be required to respond to method calls.
This can be explicitly programmed to provide the response
desired to test the functions behaviour.

I Mock objects can note which of its methods are called, and in
which order.

I Polymorphism (eg interfaces or templates) is required - the
functions need to be able to accept real and mock objects.

Black box testing?

I Black box testing - test only by varying inputs, and observing
outputs

I Polymorphism not needed

I High code coverage is more difficult to achieve.

I High code coverage maybe expensive to achieve.

6/14

Google Mock

I provides mechanisms for writing mock object given an
interface.

I wide range of monitoring functionality available

I responses of the mock object are programmable

I monitoring performed is programmable

I This style of testing without such tools is extremely tedious.

I C++ is very expressive, so tricky cases can arise.Plenty of
help on the web.

I Works well with Google Test

7/14

Code Example - a jet cleaner (really a jet rejector)

bool LlpCleaner::operator()(const pHypoJet& jet) const {

/* make cuts on jet attributes to select jets from long-lived particles */

float fsmJet;

float neJet;

if(jet -> getAttribute("FracSamplingMax", fsmJet)){

if(jet -> getAttribute("NegativeE", neJet)){

if(fsmJet > m_fSampMaxLlpThreshold &&

std::abs(neJet) > m_negELlpThreshold){isClean = false;}

} else {

throw UncleanableJet("Cleaner Cannot retrieve NegativeE");

}

} else {

throw UncleanableJet("Cleaner Cannot retrieve FracSamplingMax");

}

8/14

Example Test - one of many needed for full coverage

LlpCleaner

I LlpCleaner: one of a number of jet cleaner function objects.

I test single functionality: does the cleaner throw an exception
if a an non-existent jet moment is requested?

I passes an instrumented mock jet via an interface

Test name Instance

 code under test throws
when mock jet returns false

i/o argument (non const reference)

Check that the expected exception is thrown

“any arg” - here IJet

object
to

 test

prepare mock
method

call

mock obj

testee

9/14

Screen shot - end of output

10/14

Why write unit tests?

I they are very effective for identifying certain kinds of bugs

I the tests are close to the code, as opposed to integration tests

I my package: take milliseconds to run - instantaneous turn
around

I allow responsible refactoring of code - integration tests are
too coarse

Down side?
More code to write and maintain. The tools used help reduce this
load.

11/14

Things that make function and class testing easier

(Very) short functions and testability

I Devising inputs to explore all code paths easier.

I Determining the correct output is easier.

I Code written as several short functions rather than a single
long function is often more flexible - ie easier to modify in the
future (overriding, reuse, template pattern....)

I BUT have more functions that interact.

The 7 ± 2 rule becomes natural, rather than only a Guru
admonition.

12/14

Things that make unit testing more difficult

I many paths through the function

I use of globals
I object creation within a function:

I Instantiation within a function body may lead to more code
paths

I Makes using mock objects more difficult.

I prefer: object creation in a separate function, pass in object

I prefer: passing in an object to be used as an attribute rather
than instantiating in the constructor body.

13/14

Cmake integration

I Building the tests in Cmake has been added by A
Krasznahorkay

I instructions for building with cmake can be found at
https://twiki.cern.ch/twiki/bin/viewauth/AtlasComputing/CMakeTestProjectInstructions

I very easy instructions to follow

I Look at $SVN-
ROOT/Trigger/TriggerHypothesis/TrigHLTJetHypoUnitTests
for the cmakelist.txt

I after running make, make test runs the tests - little output if
all pass

I the command ‘ctest –verbose’ shows full output

14/14

Final Comments

I Unit tests provide fine scale testing.

I with very short functions, feels a bit like checking code with a
debugger

I could be used to catch many bugs much faster than with
integration tests

I maybe difficult to see bug effects in integration tests

I do not require the resources (machine and human) of
integration tests

I does not replace integration tests!

I coverage measurements are needed to guide design of further
tests

I the test package has integrated into the CMAKE builds - very
convenient + automatable.

