
Testing in Analysis
(using GoogleTest)

Nils Krumnack (Iowa State University)



Nils Krumnack (Iowa State University)

Introduction
• have been playing around with GoogleTest since last TIM
‣ updated some existing tests to GoogleTest
‣wrote some new tests for existing (un-tested) code
‣ for new code wrote unit tests at the same time (where possible)

• only did tests for my own code so far

• overall impression positive:
‣ generally easy to use
‣ lots of integrated features and tests
‣ used boost unit tests a while back, this seems at least as good

• though some caveats:
‣ some code isn’t written unit-test friendly
‣ some of our use cases seem missing
‣ need more support infrastructure

2



Nils Krumnack (Iowa State University)

Reminder: GoogleTest
• each test file contains a series of tests
‣ generally break down in setup and checks

• the checks should be minimal and focused (ideally one per test)
‣ allows to see easily what fails

• can group common setup code in fixtures
‣ shared and/or re-instantiated per test

• can pass parameters into fixtures (template or value)
‣ all tests get executed for each value of the parameter
‣ check multiple implementation to adhere to common interface
‣ check implementation to work for multiple parameter values

• convenience features for running (selection):
‣ (temporarily) disable tests by pre-fixing name with DISABLED_
‣ run only select tests (for debugging)
‣ re-run test N times (test for spurious failures & resource leaks)
‣missing: start process for each test (useful for crashes)

3



Nils Krumnack (Iowa State University)

EventLoop tests
• reminder: EventLoop does non-Athena job management
‣ uses drivers to implement different locations (local, batch, grid…)

• testing EventLoop itself using GoogleTest
‣ replaces some older, murkier tests

• not your typical unit test:
‣ needs to process a larger input dataset
‣ large overhead for starting batch jobs (minimize this)
‣ probably indicative of tests with large input datasets

• implemented tests using parametric fixture:
‣ passing in the driver as parameter
‣ on first test: generates input datasets and runs jobs
‣ separate (small) tests check job outputs

• roughly matches structure of old tests:
‣ generally a functional structure
‣GoogleTest provides easier checks and better accounting

4



Nils Krumnack (Iowa State University)

EventLoop problems
• will always run all jobs on first test:
‣ includes one job on large dataset to test recursive hadd, etc.
‣ slow and unnecessary when debugging other tests

• could do one fixture per dataset, but:
‣ requires each test file to instantiate multiple fixtures
‣ doesn’t work for enabling/disabling individual algorithms

• ideally have multi-step process:
‣ determine tests to run
‣ run only what I need for those tests
‣ run the actual tests

• also: rerunning tests via GoogleTest doesn’t re-run batch jobs

• can’t disable single test for single driver:
‣ can disable all tests for single driver
‣ can disable single test for all drivers
‣ problem for all parametric tests

5



Nils Krumnack (Iowa State University)

GoogleMock
• haven’t used GoogleMock in ATLAS code, but private code (so far)

• e.g. used GoogleMock to mock a random number generator
‣ allows to set the exact sequence of random numbers
‣ very easily explore every code path
‣ get predictable outputs

• extends ability to check inputs/outputs of code:
‣ control information passed in/out through function calls
‣ control number/sequence of calls to external objects

• improves testability of code:
‣ can test with inputs you want, instead of the inputs you get
‣ can test unusual/rare inputs (or input sequences)
‣ can pick more "readable" numbers, e.g. 2 instead of 1.0375…

6



Nils Krumnack (Iowa State University)

GoogleMock & ATLAS
• GoogleMock should lend itself to our component model:
‣ could use mock versions of tools and services

• didn’t use it in my tests so far:
‣ don’t use that many components to begin with
‣ for the cases I had a custom mock object seemed better

• possible issue: mock objects designed to live on the stack
‣ can easily assign them to a ToolHandle in RootCore
‣ Athena simply doesn’t allow that
‣ run such tests RootCore-only?

• sometimes custom mock objects are better:
‣ easier for complex behavior and analysis (reused across tests)
‣ easier to work with cloning, streaming, etc.

7



Nils Krumnack (Iowa State University)

Algorithm Testing
• multiple algorithm types in analysis realm:
‣ EventLoop, QuickAna, Gaudi/Athena, various analysis frameworks

• algorithms can be tricky to test well:
‣ interface designed around when and how they are called
‣ algs (can) expect a standard environment setup
‣ algs (can) access a number of services
‣ algs may need to fulfill various guarantees

• stayed away from algorithm testing so far

• one workaround: move alg code into functions/tools
‣ for complex/long algs that may be better anyways
‣ seems overkill for simple algorithms
‣ also: leaves some "glue" code untested

• better: provide algorithm testing setup
‣ need to revisit/redesign EL/QA algs anyways
‣ hope to address testability at the same time

8



Nils Krumnack (Iowa State University)

misc. items
• don’t have a uniform naming and calling convention
‣ at least not implemented in RootCore & cmt (& cmake)

• no test meta-information, e.g.:
‣ human readable description
• would help reading the log file
• currently just a comment in the test source file
‣ test dependency information,  

i.e. say that test X will likely fail if test Y failed
• useful if you have ~hundred tests fail

• how to check error conditions properly?
‣ normally print error message and return FAILURE
‣ ideally had a way to test messages generated
• testing messages could also be useful for other things
‣ or return failure modes differently?

9



Nils Krumnack (Iowa State University)

misc. items II
• how to handle tests for specific build configurations?
‣ e.g. testing checks disabled with NDEBUG
‣ disable? remove? remove content? don’t test?

• can’t nest parametric tests
‣ i.e. can’t make a matrix of test for two parameters
‣ useful in parametric tests to check adherence to an interface
• one parameter from test file, other from the library

• some tests create temporary files
‣ RootCore/cmt start them in separate directories for that
‣when running manually that doesn’t happen
• easily clobbers directories and breaks (some) tests
‣ doesn’t play nice with test auto-repeats
‣ could use a helper function that makes unique sub-directories 

per test

10


