
Slide	1	

Some	thoughts	on	
Athena	Job	Configura7on	

Walter	Lampl	
University	of	Arizona	

Mostly	my	thoughts	+	some	input	from	
previous	mee7ng	on	this	topic	



Slide	2	

A	bit	of	history	
•  Ini7ally	athena	(Gaudi)	used	a	text-base	jobOp7on	files	

–  Almost	no	program-language	capabili7es	

–  There	are	s7ll	some	*.txt	job	opts	flying	around	in	the	share	directories	

•  Was	judged	to	be	not	powerful	enough	and	we	moved	to	python	in	2003	
–  Actually	a	somewhat	tweaked	version	of	python	that	eased	the	conversion	of	txt	to	py	jobOpts	

–  I	took	me	a	liTle	while	to	grasp	that	include(“..”)	is	actually	a	not	a	python	construct		

–  In	fact,	athena.py	uses	include	that	calls	execfile	on	the	jobO	file	it	parses		

•  Python	jobOpts	grew	big	(and	messy)	over	7me	
–  We	do	use	the	full	power	of	the	language,	including	“Autoconfigura7on”		

•  Several	aTempt	to	beTer	structure	the	jobOpts	
–  Always	stayed	back-ward	compa7ble,	just	op7onal	func7onality	added	on	top	of	the	exis7ng	

framework	

–  Configured	base	class	
•  ATempts	to	mirror	the	data-flow	in	the	cxx	part	

–  ConfiguredFactory,	CfgGeTer	

•  Mostly	intended	to	provide	consistent	configura7on	of	AlgTools	or	sets	of	AlgTools	and	avoid	boiler-
plate	code		



Slide	3	

Previous	job-config	brainstorming	mee7ngs	

•  We	had	so	far	2	(inconclusive)	mee7ngs	on	this	topic:		
–  Proposal	by	Luc	&	myself	in	2013	(“Minerva”,	see	later)	

•  hTps://indico.cern.ch/event/274228/	
•  Not	too	warmly	welcomed	in	par7cular	by	the	HLT	
•  Not	a	7me	where	we	were	really	ready	to	turn	things	upside-down	

–  Splinter	Mee7ng	at	Sobware	&	Compu7ng	week	June	2015		
•  hTps://indico.cern.ch/event/342880/	

•  Discussions	about	a	declara7ve	vs	procedural	approach	
–  Declara7ve:	Some	like	a	sta7c	xml	describing	the	job	config	
–  Procedural:	A	program	with	control	flow	as	we	have	now	
–  See	next	slide	…	



Slide	4	

About	a	purely	declara7ve	approach	

•  Some	argue	that	we	should	be	able	define	our	job	
configura7on	sta7cally		

–  E.g.	one	xml	or	json	file	defining	“reconstruc7on”	

–  Instead	of	a	python	program	with	loops	and	if-statements	

•  We	actually	do	have	a	declara7ve	layer:	The	pickled	
configura7on	at	the	end	of	job-configura7on	

–  The	problem	is	rather	how	to	get	this	point	

•  My	opinion:	We	do	need	programming-language	
features	to	accommodate	our	needs	



Slide	5	

Autoconfigura7on	
•  At	the	configura7on	stage	we	peek	into	the	input	file	(BS	or	POOL)	to	get	various	

pieces	of	metadata	
•  The	run-number	obtained	this	way	is	then	used	to	peek	into	the	COOL	database	to	

obtain	even	more	metadata	

•  Autoconfigura7on	was	introduced	during	the	ini7al	commissioning	(~2008)	to	
avoid	Tier0	job	configura7on	changes	if	the	ATLAS	magnets	where	ramped	up	or	
down	(in	the	middle	of	the	night)	

•  Somewhat	contradictory	to	the	athena	framework	design:	Time-varying	changes	
should	be	handled	by	IOV	callbacks	at	the	C++	level	

–  Not	really	do-able	for	fundamental	changes	like	collisions/cosmics	or	field	on/off	

•  With	Autoconfigura7on	available	it	was	happily	used	by	many	other	clients	

–  Example:	LAr	checks	DAQ	configura7on	and	adjusts	it’s	reco	accordingly	

My	Conclusion:	Although	Autoconfigura7on	may	be	“ugly”	from	the	philosophical/
architectural	point	of	view,	I	think	it’s	not	possible	or	at	least	not	worth	gemng	rid	
of	it		



Slide	6	

What	I	dislike	about	the	current	system	

•  It’s	a	big	mess!	

•  Lots	of	try-error	needed	to	get	something	running	

•  Oben,	we	run	more	Alg/Tools/Services	than	actually	needed	for	the	
job	

•  LiTle	encapsula7on,	everything	is	global	
–  You	need	to	know	what	happened	upstream	of	your	fragment	

–  You	may	accidentally	overwrite	someone	else’s	configura7on	

•  Ever	tried	semng	up	a	job	doing	anything	non-trivial	from	scratch?		
–  I	think	only	a	handful	of	you	ever	managed	that	

–  Consequently	RecExCommon	is	used	for	many	purposes	for	which	it’s	
not	really	ideal	



Slide	7	

Methods	vs	global	namespace	

•  Usually		programmers	encapsulate	func7onality	in	
func7ons	or	methods	that	have	a	list	of	parameters	
that	they	depend	on	and	a	return	value	

–  Explicit	dependencies	

•  Our	current	python	configura7on	hides	the	
dependencies	

–  Modules	(oben	just	included	files)	depend	on	globally	defined	flags	
and	aTach	their	“result”	the	globally	defined	topSequence,	ToolSvc	or	
ServiceMgr	



Slide	8	

Impact	of	the	new	framework	

•  The	order	of	algorithm	in	the	topSequence	is	not	
important	any	more	
–  Algorithms	are	scheduled	according	to	data-flow	and	even	
in	parallel	if	possible	

•  Gemng	rid	of	shared,	public	tools	changes	the	
picture	as	well	
–  Every	tool	clearly	belongs	to	an	algorithm	and	can	be	
configured	with	it	



Slide	9	

Wish-list	for	a	new	configura7on	system	

•  No	global	name-space!	

•  Fewer,	clearer	steering	flags	

•  jobOp7on	modules	(func7ons!)	should	spell	out	what	they	depend	
on	as	parameters	
–  Grouping	of	parameters	might	be	necessary	

•  Modules	should	be	compose-able	and	independently	run-able	(if	
they	contain	at	least	one	sensible	algorithm)	
–  Example:			

•  InDetRecExamle,	CaloRecExample	could	run	on	RDO	or	BS	input	

•  egammaRec	could	run	on	ESD-input	

–  Concatena7ng	them	should	run	egamma	on	BS	or	RDO	with	no	
addi7onal	configura7on	



Slide	10	

De-Duplica7on	

•  Concatena7on	of	independently-runable	modules	leads	inevitably	to	
duplica7on	of	components	

•  On	the	other	hand,	services	are	frequently		needed	by	many	clients	and	
should	be	shared	

•  Current	strategies	to	avoid	duplicate/clashing	modules	are	
–  include.block(“	..”)		
–  python’s	inherent	import	behavior	

•  Alterna7ve/Complement:	Explicit	de-duplica7on	step	at	the	end	
–  Three	cases:		
–  Case	of	mul7ple	components	with	iden7cal	configura7on	and	name:	Unify	

–  Case	of	mul7ple	components	with	different	configura7on	and	different	name:	
Keep	separate	

–  Case	of	mul7ple	components	with	different	configura7on	and	iden7cal	name:	
ERROR	about	name	clash	



Slide	11	

How	this	could	work:	

•  Instead	of	include/execfile	the	jobOp7on	files:	

from	inputfile	import	inputfile_cfg	
cfgdict=inputfile_cfg(flags….)		

–  Can	internally	calls	the	_cfg	method	of	modules	it	depends	upon	
–  Returns	object	containing	a	list	of	(configured)	algorithms+Tools	and	

(configured)	services	
•  These	lists	can	be	concatenated	

–  Duplicates	will	be	eliminated	automa7cally		
–  Trickier	parts:		

•  Some	components	‘accumulate’	their	configura7on	from	many	places:	
–  IOVDbSvc.Folder,	StreamESD.ItemsList,	…	

This	is	basically	the	proposal	that	Luc	&	I	came	up	in	2013	called	
“Minerva”		

•  Because	it	replaces	athena.py	



Slide	12	

Summary/Conclusion	

•  S7ll	an	open	discussion	
– A	bit	of	Minerva-prototyping	done	in	2013	

•  I	am	preTy	convinced	that	our	current	jobO	are	
not	maintainable	in	the	long	term,	so	something	
needs	to	be	done	

•  Migra7ng	to	a	new	system	will	be	a	lot	of	work	
(have	some	500k	LOC	python)	

•  Whatever	new	system	we	choose	should,	it	
should	so	much	beTer	that	users	are	happily	and	
voluntarily	move	to	it		


