
Experience Migrating ID algorithms to
AthenaMT
Adam Barton Stewart Martin-Haugh, Ben Wynne

Introduction

● We have ported many of the InDet Algorithms and tools to
produce an “InDetHive” example.

● Most of the time this is a simple process of moving the
objects to DataHandle member variables and changing the
record/retrieve code.

● The way datahandles interact with the python interface
mean that any key string can be removed and you can pass
the handle directly through declare property. This typically
means the joboptions don’t need to be changed.

● A typical Change log

https://svnweb.cern.ch/cern/wsvn/atlasoff?op=comp&compare[]=/InnerDetector/InDetRecAlgs/TRT_TrackSegmentsFinder/trunk/@740025&compare[]=/InnerDetector/InDetRecAlgs/TRT_TrackSegmentsFinder/trunk/@740026

Example of moving an alg to
DataHandles – header file

Add any necessary includes -
Requirements may need changing from
private to public

Make sure any storegate pointer is a class member (if not already).

Wrap it in the appropriate template (WriteHandle or ReadHandle)

It is not necessary to have a string for the key as this is included in the template.

Example of moving an alg to
DataHandles - constructor

● Initialise datahandles with default key string, in
initialise list

● Declare property can be used to pass the key
string straight into the datahandle

ReadHandle

● To use a read handle simply check isValid(), then
use as a normal pointer.

● If you need the simple pointer you can access it
with .cptr(). NOTE: The handle retains ownership

● If you want to access the key (std::string) for the
object call .name() - useful for debugging
messages.

WriteHandles

● Writehandles can own your created object and used
throughout execute() to modify. The object will only be
considered “complete” when execute() has finished.

● Tools that write objects will be considered complete when
their calling algorithm has finished execute()

● If you have declared a (none blank) write handle you should
use it, if only to create an empty container.

Crash: “Storegate Dump”

● ATR-13715 tracks a nasty bug that was causing
crashes in athenaMT mode for some very
unobvious reasons. Once isolated it was fixed in:
AthenaServices-01-60-10

In AthenaHiveEventLoopMgr, clearStore() is called before the
EndEvent incident is fired. Since the event store dump debug
output is associated with EndEvent, this leads to all
DataProxies being reported as invalid, and worse, attempting
to make them valid again (the isValid() method can affect the
proxies, it's not const).

Issue: Optional Usage of Handles

● Many algorithms have functionality that is not used in every
configuration mode. Objects are not needed or created in
some situations. This leads to sub-optimal and buggy
scheduling when the scheduler assumes every datahandle
will be used.

● To solve this problem the scheduler has been changed to
ignore handles with empty keys (empty at configuration
time).
– Job Options need to be modified to pass empty strings in

the appropriate modes

Issue: Behaviour contigent on storegate
object existance

● Some algorithms contain code that runs if a
certain container exists in storegate.

● This should not exist in athenaMT, the scheduler
must know what is required and the algorithm
will only run once this is met.

● The conditional behaviour either needs to be
removed or changed to a configuration
conditional.

● May require consultation with the algorthim
experts

Issue: Tools with “Begin Event” Objects

● A common method we found is that tools will
create collections using a “BeginEvent” incident
and then add to the collection during calls.

● Problem: BeginEvent incidents may not be
supported in athenaMT.
– Remove the incident. Add a “newEvent” method to the tool

and add this to the appropriate algorithms

● Public tools are no longer supported so if this
tool requires public behaviour this will need to be
changed.
– We haven’t really found anything like this yet.

Issue: Nested tools passing data via
common storegate object

● When the DenseEnvironmentsAmbiguityProcessorTool is used in the
TrkAmbiguitySolver it creates a SplitClusterAmbiguityMap and
inserts items into it. It invokes a chain of tools leading to the
PixelClusterOnTrackTool which then reads from the map.

● This is problematic but not entirely forbidden:
– The PixelClusterOnTrackTool can use the datahandle but mustn’t

declare it as a property. Doing so would mean the
TrkAmbigiutySolver alg will appear to both create and require
the same item (possibly leading to compatability issues with
other algs).

– If different threads are invoked during the tool chain we could
have race conditions.

● This particular case isn’t used in the trigger so I haven’t
implemented a solution.

Issue: Independant tools adding to a
common object

● In current system the SplitClusterAmbiguityMap is created in a BeginEvent (or
retrieved if the other alg already created it) and two algrothims can insert into the
map.

● Assuming this behaviour is still required we must either change the maps to
different keys and add a merging algorithm or implement a thread safe service to
house the map.

● In such situations it would be a good idea to use the job options to collect the
keys of collections that need merging and then pass this a merging algorithm.

TrkAmbiguitySolver
PixelClusterOnTrackTool
InDetRotCreator
InDetTrackFitterTRT
InDetReFitTrack
DenseEnvironmentsAmbiguityProcessorTool

SplitClusterAmbiguityMap
insert

insert

read

TIME:

Alg: PixelClusterization

MergedPixelsTool

Feature Request: Arrays of Keys

● It may be necessary for an alg to accept a
(configuration time defined) number of keys of
the same time, for say, merging.

● You can implement this already to a limited
degree using optional handles or some hacks.

● We’ve asked for this to be supported fully as it
may be very useful for certain tasks.

Recipe for current converted algs

● asetup 20.8.X-VAL,rel_3,here
● pkgco.py InDetRecExample-02-06-05
● cd InnerDetector/InDetExample/InDetRecExample
● patch -p0 <

/afs/cern.ch/user/s/smh/public/InDetRecExample2.patch
● make -C cmt
● mkdir $TestArea/run
● cd $TestArea/run
● source RecExCommon_links.sh
● athena.py --threads=1 InDetRecExample/InDetHivePreExec.py

RecExRecoTest/RecExRecoTest_RTT_id.py

Summary

● The majority of algorthims can be ported to
datahandles transparently with no modifications
needed for job options. (Some compile
requirements may need changing).

● The most common issues requiring further changes
are conditional handles needign to be given empty
strings appropriately.

● Tools relying on BeginEvent and shared object
behaviour need to be slightly reworked.

● Other “hacky” behavior exists and would need
addresssing on a case by case basis.

