Muon Shield Intro

Mitesh Patel (Imperial College London)

On behalf of the muon shield group:

H. Dijkstra, T. Ruf (CERN)
A. Golutvin, O. Lantwin, MP (Imperial College London)
V. Bayliss, J. Boehm, T. Rawlings (RAL)

13th June 2016
Introduction

• SPS beam will produce $>10^{10}$ μ / spill

• Active muon shield required to sweep μ with $p<350$ GeV/c out of the detector acceptance

• After TP, ~48m long active shield designed (by-hand), field calculated with full FE model, good agreement with GEANT
Effect of the hadron stopper

- Detector acceptance strong function of the shield length
- Muon shield starts after ~5m of proximity shielding downstream of the target which acts as a hadron stopper
- First magnets of muon shield then have a large aperture, require larger system downstream
Magnetising the hadron stopper

- Shield design automated (minimisation in 2d, studies being upgraded to 3d) – need to refine criteria used

- Have studied the effect of magnetising the hadron stopper
 - Can shorten the muon shield and reduce the amount of iron by a factor ~2
 - Substantial gain in acceptance for e.g. HNL

- First look at engineering aspects of magnets required in shielding and target region, discussion with CERN experts

- Implement an educated guess of an achievable configuration to allow the rest of SHiP to start adapting, refine design and engineering of shield separately