

Calorimeters' system Status and Plans

M. Villa University and INFN Bologna

London, 14/06/2016

Outline

Status

- Current software status and upgrades

- Ideas on new designs
 - Preshower
 - Digital calorimetry
- Summary

Tuning with SHiP geo

• Rectangular vessel \rightarrow rectangular calo

- For backward compatibility, Calos are simply extended to cover a rectangular area: shashlik modules everywhere (baseline option)
- With «optimal» cluster position reconstruction

Ideas on new designs

- Driving wishes
 - Reduce overall costs
 - Balance between cost and performances
 - Enlarge the physics reach of calos
- Constraints/requirements
 - Which performance do we really need/want?
 - Energy resolution? Spatial resolution? Longitudinal segmentation? Shower directions? Particle identification capabilities?

All neutral channel(s)

• Axial Like Particles $\rightarrow \gamma \gamma$

W.Bonwento

First indications are promising ... need a detailed simulation to check the feasibility with a realistic detector. Need a complete system: preshower or new calo, and full reconstruction.

Sample results

A possible set-up with preshower

Side remarks

- Preshower or not, most of the costs come from using the shashlik technology
 - Tuned for high occupancy environments (hadronic colliders)
 - Very nice energy resolution and spatial resolutions (order of a fraction of cell size)
- In SHiP:
 - No requirements on occupancy (small:3-4 signals on calo per event)
 - Energy requirement might not be so crucial; provided that PID can keep efficiency and rejection power →algorithm dependent

Digital calorimetry

- Some examples on Hadron digital calorimetry
 - DHCAL Calice collaboration (R&D)
 - Sensors: RPCs, Micromegas (but also other sensors tested)
- Few examples on EM digital calorimetry:
 - HARGD (used)
 - Sensors: electrodes on Limited Streamer Tubes
 - TeraPixel Active Calorimeter (R&D)
 - Sensors: MAPS

OBELIX experiment PS201 (1990-96)

- Devoted to proton-antiproton annihilation at rest (in gas or LH2)
- Gamma energies below 2 GeV

4 Calorimeter modules: Dimensions: 4 m x 3 m x 80 cm

Fig. 1. OBELIX spectrometer: 1: open axial field magnet; 2: spiral projection chamber; 3: time-of-fligth system; 4: jet drift chamber; 5: electromagnetic calorimeter (SM1-4: left, right, top and bottom SMs).

Calorimeter HARGD

- High Angural Resolution Gamma Detector
- Accuracy on shower direction much more interesting than accuracy on energy

- Sampling calorimeter.
- Converter: lead
- Active: Limited
 streamer tubes (1cm pitch)
- Dual reading: on strips and on pads
- Digital: hit/not hit
- 10 Xo
- Spatial accuracy below
 3 mm (-> 2 mrad)

Fig. 2. Electromagnetic calorimeter stratigraphy.

'90s event display

Some results

All neutrals: **Two prongs** $\overline{p}p \to \pi^+\pi^- X(X \to \gamma\gamma; X = \pi^o, \eta)$ $\overline{p}p \to \pi^{o} X(X \to \gamma \gamma; X = \pi^{o}, \eta)$ ID entries/10 MeV/c² 0001 0081 0081 0081 1404 70000 77.44 / 96 χ²∕ndi Entries 598731 237.5 P1 6000 0.5461 Entries/5 $\eta = 36261$ bg = 107960.1154E-01 P4 27.54 60000 17.60 4000 50 50000 30 2000 1200 ŧŧ bg1 bg2 20 10 40000 1000 0.5 0.55 0.6 0.65 0.7 7 0.75 0.8 M_{.,,} (GeV/c²) 04 0.45 0.5 0.6 LH data (GeV/c 800 30000 π° + + 600 $m = 547.7 \pm 0.1 MeV/c^{2}$ 20000 400 $\sigma = 15.7 \pm 0.1 \text{ MeV/c}^2$ 10000 200 0.7 0.8 0.20.3 0.40.5 0.6 0 0.2 0.1 0.3 0.4 0.5 0.9 0 0.6 0.7 0.8 m_{γγ} (GeV/c²) (GeV/c^2) $m(\gamma\gamma)$ $\sigma(m_{\pi^o}) = 10 MeV, \quad \sigma(m_{\eta}) = 12 MeV$ $\sigma(m_{\pi^o}) = 10 MeV, \quad \sigma(m_{\eta}) = 16 MeV$

Electronics

- Very simple: just digital (0/1) on strips and pads
- All strips in a plane connected to form long shift registers.
- One effective DAQ channel per instrumented plane;
- LST dead time (local) about 2 us.
- Pad electrodes used for triggering (and to resolve ambiguities)

Ideas reusable for SHiP calo?

- Still sampling (low cost), with lateral reading
- Ideal for low occupancy experiment
- Active material 7-10 m long (feasible with tubes); handling is another problem
- Need to increase the Xo since the energies are higher
- Lateral sampling can provide more information for PID and for gamma directions
- Energy resolution will suffer for sure.

How much can we afford?

- We can use segmented strips (2.5 m long ?)
- We can have pad electrodes for triggering
- One active layer can be analog and of a different technology (scintillators?) for other purposes (timing)

Readout idea

4 wire module read by 4 electrodes per wire: 16 channels

BoE calculations

- 20 Xo, 30 active layers, 1 cm tube pitch
- $10 \times 5 \text{ m}^2$ to cover $\rightarrow 40-50 \text{ m}^2$ per layer
 - -> 22500 single tube channels

->2k or 5k tube modules

- \rightarrow can be approx 70 k digital channels
- \rightarrow 30 shift registers to read + pad channels

Pro and cons

- Pro:
 - Simplification in design, sensors and electronics
 - Longitudinal shower observable
 - Shower direction available; better PID (?)
 - Costs (?)
 (Guesswork: might be lower. To be evaluated more precisel/y)
- Cons:
 - Gas handling (?); different detector
 - Worsening of energy resolution (no numbers yet)
 - No time information
 - No high rates (not a problem)

Plans

- Have an integrated simulation to test these ideas;
- Provide a «simple» reconstruction
- Test different detector types and read-out principles
 - LST (cheap, long response times),
 - RPC (cheap, fast detector),
 - Scintillation bars (expensive, very fast)
 - Analog readout: featurefull, expensive
 → higher accuracy; better performance
 - Digital readout: no time; no overlaps; cheap!
 → lower accuracy

Summary

• There are several areas where ideas, suggestions and actual contributions are really welcomed.

- New collaborators wishing to contribute in any calo area are welcomed
 - Software/reconstruction
 - Detector design & further optimization

Please do not be shy!

References

- Affatato, S., G. Artusi, et al. (1993). *The electromagnetic calorimeter for the OBELIX experiment* <u>Nuclear Inst. and Methods in Physics Research, A 325(3)</u>: 417-428
- Bargiotti, M., A. Bertin, et al. (2002).

Protonium annihilation into $\pi^0 \pi^0$ at rest in a liquid hydrogen target Physical Review D **65**(1) 012001.