Summary of the Dark Sector Workshop @ SLAC: Focus on dark photon/dark Higgs decays to visible channels

Gaia Lanfranchi – LNF-INFN

SHiP collaboration meeting, Imperial College, 13-15 June

Focus on Dark Matter: thermal origin (recap)

As universe cools below DM mass, density decreases as $exp\{-m/T\}$

- DM interacts with SM to stay in equilibrium
- eventually DM particles can't find each other to annihilate
- and a (minimal) DM abundance is left over the present day.

Equilibrium reached easily with a tiny DM-SM coupling.

DM annihilation cross-section necessary to obtain the relic density:

 $\sigma v (relic) = 3x10^{-26} \text{ cm}^{3/\text{s}}$

This equilibrium can be reached:

- either with traditional WIMP at TeV scale with Z mediator (excluded by current limits)
- or with light DM with light mediator (hence new forces).

Light mediator must be SM singlet, options limited by SM gauge invariance: 1) Vector Portal; 2) Scalar Portal; 3) Neutrino Portal

1) Vector Portal

Four minimal LDM scenarios:

- 1) Dirac fermion;
- 2) (elastic) complex scalar
- 3) Majorana (inelastic) fermion
- 4) (Inelastic) complex scalar

First case: m(A') > m(chi) (mediator decays predominantly in DM)

Elastic Interactions: constraints from CMB and DM Direct Detection

CMB: late time annihilation of DM into charged particles increases ionization of IGM near recombination. CMB power spectrum constrains ionization and hence DM annihilation.

CMB constrains Dirac Fermion Relic LDM

Complex scalar has p-wave annihilation in early universe hence is wide open

First case: m(A') > m(chi) (mediator decays predominantly in DM)

Inelastic interactions: constraints from accelerators and beam dumps

LDM: Majorana fermion LDM: complex scalar Pseudo-Dirac Thermal Relic DM Scalar Inelastic DM 10-3 10-3 LHC LHC 10^{-4} 10^{-4} LEP 10-5 10-5 LEP 10-6 10-6 $= \epsilon^2 \alpha_D \; (m_\chi/m_{A'})^4$ 10-7 10⁻⁷ BaBar BaBar E949 E787 $\epsilon^2 \alpha_D (m_{\varphi} | m_{A'})^4$ 10⁻⁸ 10-8 10-9 10-9 10-10 10-10 E137 Relie Densit E137 10-11 10-11 10⁻¹² LSND 10-12 LSND Ш \geq 10-13 ≥ 10-13 10-14 LSND 3 Relic Density Need additional 2-4 orders 10-14 10-15 10-15 of magnitude sensitivity 10-16 10-16 10² 10³ 10^{3} 10 10 10 1 1 m_{φ} (MeV) m_{χ} (MeV)

Second case: m(A') < 2 m(chi) (mediator decays predominantly in SM final states)

- 1) m(A')< m(χ):
- \rightarrow Thermal annihilation, dominates: $\chi\chi \rightarrow A'A'$
- \rightarrow CMB largely constrains thermal scalar and fermion cases.

2) $m(\chi) \le m(A') \le 2 m(\chi)$:

Once produced the mediator decays to visible SM states directly:

 $m(A') = 1.1 m(\chi)$

Relic abundance is achieved through s-channel annihilation, with A' decays visibly: $\chi\chi \rightarrow A' \rightarrow SM;$

[Is the region below the relic density line still viable?]

DM in MeV-GeV region via the Vector Portal: a vibrant field

vector portai. Visible scarenes								
Name	Where	Source	Intensity	Production mode	Detection mode	Status		
Belle-II	Super KEK-B	$e^+e^- \rightarrow \Upsilon(3S)$	$> 100 \text{ fb}^{-1} \otimes \Upsilon(3S)$	$\Upsilon(3S) \rightarrow \gamma A'$	$A' \rightarrow e^+e^-, \mu^+\mu^-$	Commis. 2018		
Apex	JLAB	e ⁻ , 2 GeV	10 ⁹ EOT (W)	A'-strahlung	$A' \rightarrow e^+e^-$	Commis. 2018		
HPS	CEBAF12 @ JLAB	$e^{-}, 1-2 \text{ GeV}$	10 ¹⁴ EOT (W)	A'-strahlung	$A' \rightarrow e^+e^-$	Running 2016-20		
MAGIX	MESA @ Mainz	e ⁻ , 155 MeV	10 ¹⁶ EOT (Xe gas)	A'-strahlung	$A' \rightarrow e^+e^-$	Commis. 2020		
Mu3e	$\pi E5$ line @ PSI	μ^{-} , 28 MeV	$10^{15-16} \mu^{-}$	$\mu \rightarrow \nu \nu A'$	$A' \rightarrow e^+e^-$	Commis. 2017		
ATLAS/CMS	LHC @CERN	pp 8, 13 TeV	few fb ⁻¹	$H \rightarrow 4l + MET$	$A' \rightarrow \mu^+ \mu^-$	Running		
LHCb	LHC @CERN	pp,13 TeV	15 fb^{-1}	$D^* \rightarrow DA'$	$A' \rightarrow e^+e^-, \mu^+\mu^-$	Running		
NA62	SPS @CERN	p, 400 GeV	2 10 ¹⁸ POT	Meson, A'-strahlung	$A' \rightarrow e^+e^-, \mu^+\mu^-$	Running -2018		
SeaQuest	Main Inj. @ FNAL	p, 120 TeV	1.5	Meson, A'-strahlung	$A' \rightarrow \mu^+ \mu^-$	Proposed 2017–19		
SHiP	SPS @CERN	p, 400 GeV	2 10 ²⁰ POT	Meson, A'-strahlung	$A' \rightarrow e^+e^-, \mu^+\mu^-$	Proposed 2026		
	Vector portal: invisible searches							
Babar	PEP-II @ SLAC	$e^+e^- \rightarrow \Upsilon(3S)$	57 fb ⁻¹	$\Upsilon(3S) \rightarrow \gamma A'$	Single- γ trigger	ICHEP 2016		
VEPP-3	VEPP-3 @ Budker Inst.	$e^+, 500 \text{ MeV}$	1.5 MHz $\gamma\gamma$	$e^+e^- \rightarrow A'\gamma$	detect $\gamma + M_{miss}$	Proposed		
PADME	BTF @ Frascati INFN	e ⁺ , 550 MeV	$15 \text{ Hz} \gamma \gamma$	$e^+e^- \rightarrow A'\gamma$	detect $\gamma + M_{miss}$	Approved, 2017-19		
MMAPS	CESR @ Cornell	$e^+, 5.3 \text{ GeV}$	$2.2 \text{ MHz } \gamma \gamma$	$e^+e^- \rightarrow A'\gamma$	detect $\gamma + M_{miss}$	Not funded		
NA64	SPS @ CERN	e^- , 100 GeV	$e^-N \rightarrow e^-NA'$	$10^{9}-10^{12}$ EOT	detect $e^- + E_{miss}$	Running, 2016-17		
LDMX	LCLS-II @ SLAC	e ⁻ , 4 GeV	$e^-N \rightarrow e^-NA'$	10 ¹⁵ -10 ¹⁶ EOT	detect $e^- + E_{miss}$	Proposed, 2020		
Vector portal: direct DM searches								
SBND	FNAL	p, 9 GeV	2 10 ²⁰ POT	Meson, A' -strahlung $A' \rightarrow \varphi \varphi$	detect φ @ 110 m	Under study		
T2K	Tokai-Kamioka	p, 30 GeV	10 ²¹ POT	Meson, A' -strahlung $A' \rightarrow \varphi \varphi$	detect φ @ 280 m	Running		

Vector portal: visible searches

T2K	Tokai-Kamioka	p, 30 GeV	10 ²¹ POT	Meson, A'-strahlung $A' \rightarrow \varphi \varphi$	detect $\phi @ 280 \text{ m}$	Running
COHERENT	SNS @ Oak Ridge	p, 1 GeV	10 ²³ POT	Meson, A'-strahlung $A' \rightarrow \varphi \varphi$	detect ϕ @ 20 m 2°-OA	Proposed
SHiP	SPS @CERN	p, 400 GeV	2 10 ²⁰ POT	Meson, A' -strahlung $A' \rightarrow \varphi \varphi$	detect $\phi @ 100 \text{ m}$	Proposed 2026
LBNF	DUNE @FNAL	p, 120 GeV	3 10 ²¹ POT	Meson, A' -strahlung $A' \rightarrow \varphi \varphi$	detect $\phi @ 500 \text{ m}$	Under study 2020

DM in MeV-GeV region via the Vector Portal: a vibrant field

Name	Where	Source	Intensity	Production mode	Detection mode	Status	
Belle-II	Super KEK-B	$e^+e^- \rightarrow \Upsilon(3S)$	$> 100 \text{ fb}^{-1} \otimes \Upsilon(3\text{S})$	$\Upsilon(3S) \rightarrow \gamma A'$	$A' \rightarrow e^+e^-, \mu^+\mu^-$	Commis. 2018	
Apex	JLAB	e ⁻ , 2 GeV	10 ⁹ EOT (W)	A'-strahlung	$A' \rightarrow e^+e^-$	Commis. 2018	
HPS	CEBAF12 @ JLAB	$e^{-}, 1-2 \text{ GeV}$	10 ¹⁴ EOT (W)	A'-strahlung	$A' \rightarrow e^+e^-$	Running 2016-20	
MAGIX	MESA @ Mainz	e ⁻ , 155 MeV	10 ¹⁶ EOT (Xe gas)	A'-strahlung	$A' \rightarrow e^+e^-$	Commis. 2020	
Mu3e	$\pi E5$ line @ PSI	μ^{-} , 28 MeV	$10^{15-16} \mu^{-}$	$\mu \rightarrow \nu \nu A'$	$A' \rightarrow e^+e^-$	Commis. 2017	
ATLAS/CMS	LHC @CERN	pp 8, 13 TeV	few fb ⁻¹	$H \rightarrow 4l + MET$	$A' \rightarrow \mu^+ \mu^-$	Running	
LHCb	LHC @CERN	pp,13 TeV	15 fb ⁻¹	$D^* \rightarrow DA'$	$A' \rightarrow e^+e^-, \mu^+\mu^-$	Running	
NA62	SPS @CERN	p, 400 GeV	2 10 ¹⁸ POT	Meson, A'-strahlung	$A' \rightarrow e^+e^-, \mu^+\mu^-$	Running -2018	
SeaQuest	Main Inj. @ FNAL	p, 120 TeV	1.5	Meson, A'-strahlung	$A' \rightarrow \mu^+ \mu^-$	Proposed 2017–19	
SHiP	SPS @CERN	p, 400 GeV	2 10 ²⁰ POT	Meson, A'-strahlung	$A' \rightarrow e^+e^-, \mu^+\mu^-$	Proposed 2026	

Vector portal: visible searches

Vector portal: invisible searches

Babar	PEP-II @ SLAC	$e^+e^- \rightarrow \Upsilon(3S)$	57 fb ⁻¹	$\Upsilon(3S) \rightarrow \gamma A'$	Single- γ trigger	ICHEP 2016
VEPP-3	VEPP-3 @ Budker Inst.	$e^+, 500 \text{ MeV}$	1.5 MHz $\gamma\gamma$	$e^+e^- \rightarrow A'\gamma$	detect $\gamma + M_{miss}$	Proposed
PADME	BTF @ Frascati INFN	e ⁺ , 550 MeV	$15 \text{ Hz} \gamma\gamma$	$e^+e^- \rightarrow A'\gamma$	detect $\gamma + M_{miss}$	Approved, 2017-19
MMAPS	CESR @ Cornell	$e^+, 5.3 \text{ GeV}$	$2.2 \text{ MHz } \gamma \gamma$	$e^+e^- \rightarrow A'\gamma$	detect $\gamma + M_{miss}$	Not funded
NA64	SPS @ CERN	e^- , 100 GeV	$e^-N \rightarrow e^-NA'$	$10^{9}-10^{12}$ EOT	detect $e^- + E_{miss}$	Running, 2016-17
LDMX	LCLS-II @ SLAC	e ⁻ , 4 GeV	$e^-N \rightarrow e^-NA'$	10 ¹⁵ -10 ¹⁶ EOT	detect $e^- + E_{miss}$	Proposed, 2020

Vector portal: direct DM searches

SBND	FNAL	p, 9 GeV	2 10 ²⁰ POT	Meson, A' -strahlung $A' \rightarrow \varphi \varphi$	detect ø @ 110 m	Under study
T2K	Tokai-Kamioka	p, 30 GeV	10 ²¹ POT	Meson, A'-strahlung $A' \rightarrow \varphi \varphi$	detect $\phi @ 280 \text{ m}$	Running
COHERENT	SNS @ Oak Ridge	p, 1 GeV	10 ²³ POT	Meson, A' -strahlung $A' \rightarrow \varphi \varphi$	detect ϕ @ 20 m 2°-OA	Proposed
SHiP	SPS @CERN	p, 400 GeV	2 10 ²⁰ POT	Meson, A' -strahlung $A' \rightarrow \varphi \varphi$	detect $\phi @ 100 \text{ m}$	Proposed 2026
LBNF	DUNE @FNAL	p, 120 GeV	3 10 ²¹ POT	Meson, A'-strahlung $A' \rightarrow \varphi \varphi$	detect $\phi @ 500 \text{ m}$	Under study 2020

HPS: JLAB, 1-2 GeV e-, 10^{14} eot, A'-strahlung, A' $\rightarrow e^+ e^-$, running (2016-2020) APEX: JLAB, ~2 GeV e-, 10^9 eot, A'-strahlung, A' $\rightarrow e^+ e^-$, commissioning 2018.

VEPP-3 @ Budker Inst., 500 MeV e⁻, 1.5 MHz γγ, e⁺e⁻→A'γ, A→e⁺ e⁻, Proposed

155 MeV e⁻, 10¹⁶ eot (Xe gas), A'-strahlung, A' → e⁺ e⁻, comm:2020

Vector portal: visible searches

FermiLab - US

Dark Matter searches at FNAL:

beam dump \rightarrow dark matter beams \rightarrow detection by scattering in detector In neutrino detector, DM signature ~ neutral current event

- 1. SeaQuest arXiv: 1509.00050 (discussed in this workshop)
- 2. MiniBoone arXiv: 1411.4311 longterm, ~no-cost, well-understood detector

"6º of Separation" arXiv: 1512.0385
new ideas for NuMI beam and LBNF: sit 6º away to minimize neutrino flux, look for dark matter beam.
MiniBoone ~ 6º from NuMi line (but a little close)
LBNF possibilities (see below)

SeaQuest@FNAL: search for Dark Photon and Dark Higgs

120 GeV protons, 2x10¹² ppp (5% of MI) 4 sec spill, 200 days, 2x10¹⁸ pot

- now: Use E906 (currently running) setup (nucleon, nuclear structure physics with DY)
- 2017-2019: parasitic run with x10 TDAQ rate (10 kHz), new tracker
- 2020++: dedicated run, e/π PID capability, x100 TDAQ rate (100 kHz)

Interesting experiment: we have to keep an eye on it....

Scalar Mediator

Thermal Target: Direct Annihilation to SM

Normalized to electron coupling because it's relevant for every mass point

Direct Annihilation: Ruled Out

Constrained by $B \rightarrow K$ invisible decays, Higgs invisible width and low mass direct searches

Annihilation to Mediators: Thermal Target?

Can still produce/observe mediator, but no direct target

So long as annihilation is p-wave DM doesn't matter for bounds

Conclusions

Focus on light DM with thermal origin:

-light DM requires light mediators to reach equilibrium.

Focus on Vector and Scalar mediators decaying to visible SM final states:

- Very lively community planning several experiment in the near and far future.
- SHiP has a unique sensitivity uncovered by current or future experiments.
- Keep an eye to SeaQuest@FNAL and NA62 @ CERN (see talk later on) for sensitivities and backgrounds.