

Ship Spectrometer Tracker

MFL on behalf of SHiP Spectrometer Tracker group

- R&D activities:
 - Test beam, North area
 - Dubna: larger diameter straws
- Simulation:
 - FairSHiP, evolution of geometry
 - Garfield++
- Brainstorming (to he or not to he)
 - other technologies ?

For analysis results of first testbeam in 2015, see Katerina & Valdimir's talk (BTW, Polytech St Petersburg applying to become associate of SHiP)

Detector R&D: Test beam

Goal: measure drift time distributions (incl. efficiency) with well defined tracks and with known wire-vs-straw offset.

Variable parameters: straw-wire offset, HV, gas pressure

- Set up a tracker telescope to define tracks with <~100um vertical precision on DUT (device under study)
 - Now using ITEP delay wire chambers (kindly provided by Pavel Shatalov), 4 chambers instead of 3
- DUT = a few straws (not necessarily 5m) with controlled and optically measured wire offset
 - start with single straw of 5m
- System to measure independently the straw-wire offset

Detector R&D: Test beam 2016

- Got two weeks in H2 zone, end of July start of Aug, to be shared with other SHiP detectors
 - nice thing: we can enter the zone freely already start of July (NA61)
- Parasitic area at H2 dump, already moved there
 - will use it mostly June Oct

Setup:

- (Single) long or short straw
- Install an optical system to monitor wire-straw offset
 - parts/components ordered
 - mechanical design / assembly => ITEP, Alexander Semennikov
- Use 4 DWCs (instead of 3),
 - Optional: if resolution of DWCs turns out to be marginal, possibility to collaborate with an external group with a Si telescope (10cm x 10cm x 8 strip planes, 180 um pitch)

Detector R&D: test beam area

Detector R&D: test beam schedule 2016

Detector R&D: the setup (almost complete)

1 rack

 bottles will be in 1B79 (just above the dump, on the pathway)

 two plastic tubes pulled to rack (re-usable also for inside H2)

SPS North Hall H8 line

SPS North Hall H2 line

Detector R&D: Optical setup

- Laboratory tests with digital camera
 Dino-Lite AM7515MZTL validated the feasibility of measuring the position of the wire inside a straw.
- Standard software includes suitable tools for online measurement of distances.
- Mechanical support for the camera with adjustable carriage is under construction.

Detector R&D: Fast amplifier for 5m straw tube

- PCB design is ready
- 5 pilot boards produced
- 2 amplifiers assembeld for beam test

Preamp circuit design by Vladimir Vaniev, IHEP Protvino PCB design and assembly by Anatoli Zhokhov, ITEP.

> Sensitivity: 6 mV/fQ Rise time: 7 nsec

Detector R&D: sketch of foreseen setup

+ VME DAQ ⁵⁵Fe source Floating nAmeter Pressure-meter etc...

Detector R&D: larger diameter straws

- developments from Dubna (Temur Enik, Sergej Movchan)
 - Will first produce short «toy» straws of 20 & 30mm with Al tube.
- considering order of small roll of Cu+Au coated 36um PET
 - needs decision on dimensions (width of cutting)
 - Diameters: 10, 20 & 30mm ... or ?

Simulation: evolution (top view)

What about SST?

it is assumed that the magnet gap remains flat (parallel)

Simulation: SST proper, work ahead

- Stereo angle optimization
- Straw diameter studies
 - Garfield++
 - SST performance (tracking & vertexing)
- T_zero treatment
- Realistic signal description
- Digitization
- Misalignments, distortions
 - How much wire offset can we cope with ?
 - How many holding points needed along X ?

Simulation: Garfield => Garfield++

Straw tube geometry and fields

Garfield

• Garfield++

Daniil Sukhonos (master student), Oleg Bezshyyko

Taras Shevchenko National University of Kyiv

And now, for your entertainment ...

Brainstorm: to he or not to he...

- If decay volume = vacuum
 - vacuum/gas barrier over large surface area
 - straw option seems to be the best technology
- If decay volume = 1 atm Helium
 - Other technologies could compete with straw option
 - TPC
 - Different geometries possible
 - Drift / wire chamber

Groups welcome to undertake study to compare performance vs straw option

Biggest vac chamber ever?

- "Materials Testing Accelerator"
- 25 m long, 18 m diameter

The Materials Testing Accelerator (MTA), built, in the early 1950s, at a site that would later become the Lawrence Livermore Laboratory. The purpose of the machine was to produce nuclear material, but it never produced any (due to uncontrollable sparking).

News from Astro-H

A picture by Hitomi (Astro-H)

Hitomi satellite tracking

