

1.) Electrostatic Machines:
 The Cockcroft-Walton Generator

1928: Encouraged by Rutherford Cockcroft and Walton start the design \& construction of a high voltage generator to accelerate a proton beam

1932: First particle beam (protons) produced for nuclear reactions: splitting of Li-nuclei with a proton beam of 400 keV

Particle source: Hydrogen discharge tube $\begin{array}{lc} & \text { on } 400 \mathrm{kV} \text { level } \\ \text { Accelerator: } \begin{array}{c}\text { evacuated glas tube }\end{array} \\ \text { Target: } \quad \text { Li-Foil on earth potential }\end{array}$

Technically: rectifier circuit, built of capacitors and diodes (Greinacher)

Problem:
DC Voltage can only be used once

2.) Electrostatic Machines:
 (Tandem -) van de Graaff Accelerator (1930 ...)

creating high voltages by mechanical transport of charges

Problems: * Particle energy limited by high voltage discharges

* high voltage can only be applied once per particle or twice?

3.) The first RF-Accelerator: "Linac"

1928, Wideroe: how can the acceleration voltage be applied several times to the particle beam
schematic Layout:

Energy gained after nacceleration gaps

$$
E_{n}=n * q * U_{0} * \sin \psi_{s}
$$

n number of gaps between the drift tubes \boldsymbol{q} charge of the particle
$\boldsymbol{U}_{\boldsymbol{0}}$ Peak voltage of the RF System
$\boldsymbol{\Psi}_{S}$ synchronous phase of the particle

* acceleration of the proton in the first gap
* voltage has to be ,flipped" to get the right sign in the second gap \rightarrow RF voltage \rightarrow shield the particle in drift tubes during the negative half wave of the $R F$ voltage

English Teacher Program, Bernhard Holzer, CERN

Wideroe-Structure: the drift tubes

shielding of the particles during the negative half wave of the RF

Time span of the negative half wave:	$\tau_{\boldsymbol{R F}} / 2$	
Length of the Drift Tube:	$l_{i}=v_{i} * \frac{\tau_{r f}}{2}$	$\rightarrow v_{i}=\sqrt{2 E_{i} / m}$
Kinetic Energy of the Particles	$E_{i}=\frac{1}{2} m v^{2}$	$l_{i}=\frac{1}{v_{r f}} * \sqrt{\frac{i * q^{*} U_{0} * \sin \psi_{s}}{2 m}}$
		valid for non relativistic particles ...

Alvarez-Structure: 1946, surround the whole structure by a rf vessel

Energy: ≈ 20 MeV per Nucleon $\beta \approx 0.04 \ldots 0.6$, Particles: Protons/Ions

3.) The Cyclotron: (Livingston / Lawrence ~1930)

Idea: $B=$ const,$R F=$ const
Synchronisation particle / RF via orbit

Lorentzforce

$$
\vec{F}=q *(\vec{v} \times \vec{B})=q * v * B
$$

circular orbit

$$
q * v * B=\frac{m * v^{2}}{R} \rightarrow B * R=p / q \quad \begin{aligned}
& \text { increasing radius for } \\
& \text { increasing momentum } \\
& \rightarrow \text { Spiral Trajectory }
\end{aligned}
$$

revolution frequency

$$
\omega_{z}=\frac{v}{R}=\frac{q}{m} * B_{z} \quad \begin{aligned}
& \text { the cyclotron (rf-) frequency } \\
& \text { is independent of the momentum }
\end{aligned}
$$

$r f$-frequency $=h *$ revolution frequency, $\quad h=$ "harmonic number"

Cyclotron:

exact equation for revolution frequency:
$\omega_{z}=\frac{v}{R}=\frac{q}{\gamma * m} * B_{z}$
1.) if $v \ll c \Rightarrow \gamma \cong 1$
2.) γ increases with the energy \Rightarrow no exact synchronism
Synch "synchronisation" with the acceleration

"synchronisation
via the spiraling on
$\gamma \omega_{R F}=$ constant
$\omega_{\text {RF }}$ decreases with time

$$
\omega_{s}(t)=\omega_{r f}(t)=\frac{q}{\gamma(t) * m_{0}} * B
$$

keep the synchronisation condition by varying the rffrequency

Fixed target experiments:

HARP Detector, CERN

Collider experiments:
$\boldsymbol{E}=\boldsymbol{m} \boldsymbol{c}^{2}$

low event rate (luminosity)
challenging track identification symmetric detector
$\boldsymbol{E}_{l a b}=\boldsymbol{E}_{c m}$
Z_{0} boson discovery at the UA2 experiment (CERN).
The Z_{0} boson decays
into a $\mathrm{e}+\mathrm{e}-$ pair, shown as white dashed lines.

Problem: Our particles are VERY small !!
Overall cross section of the Higgs:

$1 b=10^{-24} \mathrm{~cm}^{2}$
$1 \mathrm{pb}=10^{-12} * 10^{-24} \mathrm{~cm}^{2}=1 / \mathrm{mio}^{*} 1 / \mathrm{mio}^{*} 1 / \mathrm{mio}^{*} 1 / \mathrm{mio}^{*} 1 / \mathrm{mio} * 1 / 10000 \mathrm{~mm}^{2}$
The only chance we have:
The particles are "very small"
compress the transverse beam size ... at the IP

1.) Introduction and Basic Ideas

"... in the end and after all it should be a kind of circular machine"
\rightarrow need transverse deflecting force

Lorentzforce
$\vec{F}=q^{*}(\neq \vec{v} \times \vec{B})$
typical velocity in high energy machines:
$v \approx c \approx 3 * 10^{8} \mathrm{~m} / \mathrm{s}$

Example:

$$
\begin{aligned}
& B=1 T \quad \rightarrow \quad F=q * 3 * 10^{8} \frac{\mathrm{~m}}{\mathrm{~s}} * 1 \frac{\mathrm{Vs}}{\mathrm{~m}^{2}} \\
& F=q * 300 \frac{M V}{m} \\
& \text { equivalent } \\
& \text { electrical field: } \\
& \text { Technical limit for electrical fields: } \\
& \text { E } \\
& \text { English Teacher Program, Bernhard Holzer, CERN }
\end{aligned}
$$

Pearl of Wisdom:

if you are clever, you use magnetic fields in an accelerator wherever

it is possible.

The ideal circular orbit

condition for circular orbit:

$$
\left.\begin{array}{ll}
\text { Lorentz force } & F_{L}=e v B \\
\text { centrifugal force } & F_{\text {centr }}=\frac{\gamma m_{0} v^{2}}{\rho} \\
& \frac{\gamma m_{0} v^{\prime}}{\rho}=e<B
\end{array} \quad \begin{array}{l}
\frac{p}{e}=B \rho \\
\\
\end{array}\right\} \quad B \rho=\text { "beam rigidity" }
$$

Focusing Properties and Quadrupole Magnets

| Focusing forces and particle trajectories:
 normalise magnet fields to momentum
 (remember: $\left.\boldsymbol{B}^{*} \rho=\boldsymbol{p} / q\right)$
 Dipole Magnet |
| :--- | :--- | :--- |
| $\qquad \frac{B}{p / q}=\frac{B}{B \rho}=\frac{1}{\rho} \quad$ Quadrupole Magnet |$\quad k:=\frac{g}{p / q}$

4.) Solution of Trajectory Equations

Define ... hor, plane: $K=1 / \rho^{2}+k$
... vert. Plane: $K=-k$

$$
x^{\prime \prime}+\boldsymbol{K} x=0
$$

Differential Equation of harmonic oscillator ... with spring constant K

Ansatz: Hor. Focusing Quadrupole $K>0$:

$$
\begin{aligned}
& x(s)=x_{0} \cdot \cos (\sqrt{|K|} s)+x_{0}^{\prime} \cdot \frac{1}{\sqrt{|K|}} \sin (\sqrt{|K|} s) \\
& x^{\prime}(s)=-x_{0} \cdot \sqrt{|K|} \cdot \sin (\sqrt{|K|} s)+x_{0}^{\prime} \cdot \cos (\sqrt{|K|} s)
\end{aligned}
$$

For convenience expressed in matrix formalism:

$$
\begin{aligned}
\binom{x}{x^{\prime}}_{s 1}=M_{f o c} *\binom{x}{x^{\prime}}_{s 0} & \boldsymbol{M}_{f o c}=\left(\begin{array}{cc}
\cos (\sqrt{|\boldsymbol{K}|} \boldsymbol{l}) & \frac{1}{\sqrt{|\boldsymbol{K}|}} \sin (\sqrt{|\boldsymbol{K}|} \boldsymbol{l}) \\
-\sqrt{|\boldsymbol{K}|} \sin (\sqrt{|\boldsymbol{K}|} \boldsymbol{l}) & \cos (\sqrt{|\boldsymbol{K}|} \boldsymbol{l})
\end{array}\right) \\
& \text { English Teacher Program, }
\end{aligned}
$$

hor. defocusing quadrupole:

$$
\boldsymbol{x}^{\prime \prime}-\boldsymbol{K} \boldsymbol{x}=0
$$

Ansatz: Remember from school

$$
x(s)=a_{1} \cdot \cosh (\omega s)+a_{2} \cdot \sinh (\omega s) \quad M_{\text {defoc }}=\left(\begin{array}{cc}
\cosh \sqrt{|K|} l & \frac{1}{\sqrt{|K|}} \sinh \sqrt{|K|} l \\
\sqrt{|K|} \sinh \sqrt{|K|} l & \cosh \sqrt{|K|} l
\end{array}\right)
$$

drift space:

$$
\begin{array}{cc}
\boldsymbol{K}=0 & \\
x(s)=x_{0}^{\prime} * s & M_{\text {drift }}=\left(\begin{array}{ll}
1 & l \\
0 & 1
\end{array}\right)
\end{array}
$$

! with the assumptions made, the motion in the horizontal and vertical planes are independent ,".. the particle motion in $x \& y$ is uncoupled"

English Teacher Program, Bernhard Holzer, CERN

Transformation through a system of lattice elements

combine the single element solutions by multiplication of the matrices

$$
M_{\text {total }}=M_{Q F} * M_{D} * M_{Q D} * M_{B \mathrm{e} n d} * M_{D^{*} \ldots . .}
$$

$$
\binom{x}{x^{\prime}}_{s 2}=M\left(s_{2}, s_{1}\right) *\binom{x}{x^{\prime}}_{s 1}
$$

in each accelerator element the particle trajectory corresponds to the movement of a harmonic oscillator ,,

LHC Operation: Beam Commissioning

The transverse focusing fields create a harmonic oscillation of the particles with a well defined "Eigenfrequency" which is called tune

First turn steering "by sector:"

> Question: what will happen, if the particle performs a second turn?

Astronomer Hill:

differential equation for motions with periodic focusing properties „Hill 's equation"

Example: particle motion with periodic coefficient
equation of motion: $\quad x^{\prime \prime}(s)-k(s) x(s)=0$

restoring force \neq const,
$k(s)=$ depending on the position s $k(s+L)=k(s)$, periodic function

Amplitude of a particle trajectory:

$$
x(s)=\sqrt{\varepsilon} * \sqrt{\beta(s)} * \cos (\psi(s)+\varphi)
$$

we expect a kind of quasi harmonic
oscillation: amplitude $\&$ phase will depend
on the position s in the ring. on the position s in the ring.

Maximum size of a particle amplitude

$$
\hat{x}(s)=\sqrt{\varepsilon} \sqrt{\beta(s)}
$$

The Beta Function
β determines the beam size ... the envelope of all particle trajectories at a given position " s " in the storage ring under the influence of all (!) focusing fields.

It reflects the periodicity of the magnet structure.

The Beta Function: Lattice Design \& Beam Optics

The beta function determines the maximum amplitude a single particle trajectory can reach at a given position in the ring.
It is determined by the focusing properties of the lattice and follows the periodicity of the machine.
optics at 7000 GeV

Beam Emittance and Phase Space Ellipse

ε beam emittance $=$ woozilycity of the particle ensemble, intrinsic beam parameter, cannot be changed by the foc. properties.
Scientifiquely spoken: area covered in transverse x, x^{\prime} phase space ... and it is constant !!!
English Teacher Program, Bernhard Holzer, CERN

Particle Tracking in a Storage Ring

Calculate x, x^{\prime} for each accelerator element according to matrix formalism and plot x, x^{\prime} at a given position "s" in the phase space diagram

$$
\binom{\boldsymbol{x}}{\boldsymbol{x}^{\prime}}_{s 1}=\boldsymbol{M}_{\text {turn }} *\binom{\boldsymbol{x}}{\boldsymbol{x}^{\prime}}_{s 0}
$$

A beam of 4 particles - each having a slightly different emittance:

English Teacher Program, Bernhard Holzer, CERN

Emittance of the Particle Ensemble:

Particle Distribution: $\quad \rho(x)=\frac{N \cdot e}{\sqrt{2 \pi} \sigma_{x}} \cdot e^{2 \sigma_{x}}$
particle at distance 1σ from centre $\leftrightarrow 68.3 \%$ of all beam particles
single particle trajectories, $N \approx 10{ }^{11}$ per bunch

aperture requirements: $r_{0}=17 * \sigma$
English Teacher Program, Bernhard Holzer, CERN

5.) Luminosity

Ereignis Rate:"Physik" pro Sekunde
$R=L * \Sigma_{\text {react }}$

Example: Luminosity run at LHC

$$
\begin{array}{lll}
\boldsymbol{\beta}_{x, y}=0.55 \boldsymbol{m} & \boldsymbol{f}_{0}=11.245 \mathrm{kHz} \\
\boldsymbol{\varepsilon}_{x, y}=5 * 10^{-10} \mathrm{rad} \boldsymbol{m} & \boldsymbol{n}_{b}=2808 \\
\boldsymbol{\sigma}_{x, y}=17 \boldsymbol{\mu m} & & \boldsymbol{L}=\frac{1}{4 \pi \boldsymbol{e}^{2} \boldsymbol{f}_{0} \boldsymbol{n}_{b}} * \frac{\boldsymbol{I}_{p 1} \boldsymbol{I}_{p 2}}{\boldsymbol{\sigma}_{\boldsymbol{x}} \boldsymbol{\sigma}_{y}}
\end{array}
$$

$$
\boldsymbol{I}_{p}=584 \boldsymbol{m} \boldsymbol{A}
$$

$$
\boldsymbol{L}=1.0 * 10^{34} 1 / \mathrm{cm}^{2} \mathrm{~s}
$$

English Teacher Program, Bernhard Holzer, CERN

The LHC Mini-Beta-Insertions

mini β optics
English Teacher Program, Bernhard Holzer, CERN

III. The Acceleration

Where is the acceleration? Install an RF accelerating structure in the ring:

B. Salvant

English Teacher Program,

[^0]N. Biancacc

The Acceleration \& "Phase Focusing" $\Delta p / p \neq 0$ below transition

ideal particle •
particle with $\Delta p / p>0$ faster
particle with $\Delta p / p<0 \bullet$ slower

Focussing effect in the longitudinal direction keeping the particles close together ... forming a "bunch"

English Teacher Program, Bernhard Holzer, CERN

The Acceleration above transition
ideal particle \bullet
particle with $\Delta p / p>0 \bullet$ heavier
particle with $\Delta p / p<0 \bullet \quad$ lighter

Focussing effect in the longitudinal direction
keeping the particles close together ... forming a"bunch"
... and how do we accelerate now ??? with the dipole magnets ! Bernhard Holzer, CERN

The RF system: IR4			
	D4Q Q ${ }^{4}$ Q Q6		${ }^{4}{ }^{4}$
- ${ }^{20 \mathrm{man}}$ - 420 mm	-		
Cemmemmen	\%		H..
$C S$			
	Bunch length (4б)	$n s$	1.06
	Energy spread (2б)	10^{-3}	0.22
marcmime	Synchr. rad. loss/turn	keV	7
	Synchr. rad. power	$k W$	3.6
- Nicem	RF frequency	M	400
Nb on Cu cavities @4.5 K ($=$ LEP2) Beam pipe diam. $=300 \mathrm{~mm}$		Hz	
English Teacher Program,	ernhard Holzer, CERN		

1.) Where are we?

* Standard Model of HEP
* Higgs discovery

production rate of events is determined by the cross section $\Sigma_{\text {react }}$ and a parameter L that is given by the design of the accelerator: ... the luminosity					

During collider run we had in Run 1 ..
1400 bunches circulating,
with 800 Mio proton collisions per second in the experiments and collected only 450 Higgs particles in three years.

LHC Operation:

Machine Protection \& Safety
Energy Stored in the Beam of different Storage Rings

LHC Operation:

Machine Protection \& Safety

LHC Aperture and Collimation

LHC Operation:

Machine Protection \& Safety
... Komponenten des Machine Protection Systems:
beam loss monitors QPS
 permit server orbit control
power supply control collimators
online on beam check of all (?)
hardware components a fast dump
the gaussian beam profile

LHC Operation: Machine Protection \& Safety

(ㅍII)

What will happen in case of Hardware Failure

Phase space deformation in case of failure of RQ4.LR7 (A. Gómez)

Short Summary of the studies:
quench in sc. arc dipoles: $\tau_{\text {loss }}=20-30 \mathrm{~ms}$
BLM system reacts in time, QPS is not fast enough
quench in sc. arc quadrupoles: $\tau_{\text {loss }}=200 \mathrm{~ms}$
$B L M \& Q P S$ react in time
failure of nc. quadrupoles: $\tau_{\text {det }}=6 \mathbf{m s}$
failure of nc. dipole:

Energy stored in the magnets

~ 10 Gjoule* (only in the main dipoles) corresponds to ...

More important than the amount of energy is ... How fast (an safe) can this energy be

Energy stored in the magnets:

quench

LHC Operation: Machine Protection \& Safety

2.) Where do we go ?

* Physics beyond the Standard Model
* Dark Matter / Dark Energy

Future Projects
 Recommendations from European Strategy Group

\#1 c) The discovery of the Higgs boson is the start of a major programme of work to measure this particle's properties with the highest possible precision for testing the validity of the Standard Model and to search for further new physics at the energy frontier. The LHC is in a unique position to pursue this programme. Europe's top priority should be the exploitation of the full potential of the LHC, including the high-luminosity upgrade of the machine and detectors with a view to collecting ten times more data than in the initial design, by around 2030. This upgrade programme will also provide
d) To stay at the forefront of particle physics, Europe needs to be in a position to propose an ambitious post-LHC accelerator project at CERN by the time of the next Strategy update, when physics results from the LHC running at 14 TeV will be available. CERN should undertake design studies for accelerator projects in a global context, with emphasis on proton-proton and electronpositron high-energy frontier machines. These design studies should be coupled to a vigorous
 structures, in collaboration with national institutes, laboratories and universities worldwide.

$$
\begin{array}{cc}
\rightarrow \text { Proton -Proton Colliders } & =>e+/ e-\text { colliders } \\
\text { LHC } / H L-L H C, H E-L H C & T L E P, C L I C
\end{array}
$$

4.) Push for higher energy: FCC

* increasing the ring size
* stronger magnets

Two key players in sc magnet technology: NbTi and $\mathrm{Nb}_{3} \mathrm{Sn}$

The Push for Higher Beam Energy

NbTi LHC standard dipoles, 8.3 T
$\mathrm{Nb}_{3} \mathrm{Sn}$ FCC type dipole coils, 11 T-16 T
it is a simple scaling wrt LHC: circumference $100 \mathrm{~km} / 27 \mathrm{~km}$ \rightarrow Factor 3.7
dipole field: 16 T/8.3 T \rightarrow Factor 1.93

LHC energy $E_{c m}=2 * 7$ TeV * 7.1

FCC energy $E_{c m}=100$ TeV centre of mass

English Teacher Program, Bernhard Holzer, CERN

```
5.) High Energy Lepton Colliders
    * Limited by Synchrotron Radiation
    * and RF Power
```


Synchrotron Radiation

In a circular accelerator charged particles lose energy via emission of intense light.
$P_{s}=\frac{2}{3} \alpha \hbar \frac{\gamma^{4}}{\rho^{2}} \quad$ radiation power
$\Delta E=\frac{4}{3} \pi \alpha \hbar\left(\frac{\gamma}{\varrho}\right) \quad$ energy loss $\quad \alpha \approx \frac{1}{137}$
$\omega_{c}=\frac{3}{2} \frac{c \gamma^{3}}{\rho} \quad$ critical frequency

$\hbar c \approx 197 \mathrm{MeV} \mathrm{fm}$
1946 observed for the first time in the General Electric Synchrotron

English Teacher Program, Bernhard Holzer, CERN

Synchrotron Radiation as useful tool

structure analysis with highest resolution Ribosome molecule

Absorption Line Radiographie

English Teacher Program, Bernhard Holzer, CERN

Planning the next generation e^{+} / \boldsymbol{e} - Ring Colliders

Design Parameters FCC-ee
\(\left.\begin{array}{rl}\boldsymbol{E}=175 \mathrm{GeV} / beam

\boldsymbol{L}=100 \mathrm{~km}\end{array}\right]\)| |
| :--- |
| $\Delta U_{0}(\mathrm{keV}) \approx \frac{89 * E^{4}(\mathrm{GeV})}{\rho}$ |
| $\Delta U_{0} \approx 8.62 \mathrm{GeV}$ |

$\Delta P_{s y} \approx \frac{\Delta U_{0}}{T_{0}} * N_{p}=\frac{10.4 * 10^{6} \mathrm{eV} * 1.6 * 10^{-19} \mathrm{Cb}}{263 * 10^{-6} \mathrm{~s}} * 9 * 10^{12}$
$\Delta P_{s y} \approx 47 \mathrm{MW} \quad$ Circular $e^{+} /$e-colliders are severely limited by
synchrotron radiation losses and have to be replaced for higher energies by linear accelerators

English Teacher Program, Bernhard Holzer, CERN
6.) Push for higher energy
*go linear

* higher acceleration gradients

```
Lepton Colliders: Linear / Storage Rings
Avoid bending forces }->\mathrm{ go linear
```

Storage Ring: dipole magnets
$\begin{aligned} & \text { synchrotron radiation } \\ & \text { energy loss per turn }\end{aligned} \quad P_{\gamma}=\frac{c C_{\gamma}}{2 \pi} \frac{E^{4}}{\rho^{2}}, \quad C_{\gamma}=8.9 * 10^{-5} \mathrm{~m} / \mathrm{GeV}^{3}$ high RF power to compensate losses very efficient, turn by turn acceleration

Linear Collider: no synchr. Radiation limited efficiency: $N^{10}-1$ particles are lost after the collision need highest acceleration gradient "one turn" machines"
lepton colisions are "clean"

Plasma Wake Acceleration

Electric field $>100 \mathrm{GV} / \mathrm{m}$

Study of High Gradient Acceleration Techniques

Plasma oscillation frequency:

$$
\omega_{\mathrm{pe}}=\sqrt{\frac{n_{\mathrm{e}} e^{2}}{m^{*} \varepsilon_{0}}}
$$

Intense Laser light creates a plasma beat wave, that separates the electrons from the heavy (and so much slower) ions. A quasi electron free region (bubble) is created and as consequence a large electric field that can be used to accelerate particles.

The first laser creates the accelerating structure, a second laser beam is used to heat electrons

Bernhard Holzer, CERN

Study of High Gradient Acceleration Techniques

Plasma Wake Acceleration

particle beam driven / LASER driven
Incoming laser pulse (or pulse of particles) creates a travelling plasma wave in a low-pressure gas
Plasma wake field gradient accelerates electrons that 'surf' on the plasma wave

Field Gradients up to $100 \mathrm{GeV} / \mathrm{m}$ observed

Plasma cell Univ. Texas, Austin $E_{e}=2 \mathrm{GeV}$
$\Delta E / \Delta s=200 \mathrm{MeV} / 4 m m{ }_{i}$
$=50 \mathrm{GeV} / \mathrm{m}$

[^0]: Bernhard Holzer, CERN

