Why Accelerators? Introduction to Accelerator Physics

by
Verena Kain CERN BE-OP

Why accelerators?

Accelerators are instruments that increase the energy of particles to study smaller and smaller structures and create heavy short-lived objects in collision with

$$E = m \cdot c^2$$

Wavelength of probe radiation needs to be smaller than object to be resolved

$$I = \frac{h}{p} = \frac{h \times c}{E}$$

Object	size	Radiation energy
Atom	10 ⁻¹⁰ m	0.00001 GeV
Nucleus	10 ⁻¹⁴ m	0.01 GeV
Nucleon	10 ⁻¹⁵ m	0.1 GeV
Quarks	-	> 1 GeV

The units we are using...

Energy: in units of eV:

corresponds to the energy gained by charge of a single electron moved across a potential difference of one volt.

$$1 \text{ eV} = 1.602176565(35) \times 10^{-19} \times 1 \text{ J}$$

This comes from electrostatic particle accelerators.

Unit of mass m: we use $E=mc^2$

→ Unit of mass is eV/c²

Unit of momentum p:

with
$$E^2 = (mc^2)^2 + p^2c^2$$

→ Unit of momentum is eV/c

Natural Accelerators

Radioactive Accelerators

- Rutherford experiment 1911
- Used α particles tunneling through the Coulomb barrier of Ra and Th to investigate the inner structure of atoms
- Existence of positively charged nucleus, d ~ 10⁻¹³ m
- α particle kinetic energy ~ 6 MeV

Cosmic rays

- Energies up to 3 x 10²⁰ eV for heavy elements have been measured. ~
 40 x 10⁶ times what the LHC can do.
- "Ultra high energy" cosmic rays are rare...

Why accelerators then...?

"Our" accelerators have the advantage:

High energies, high fluxes of a given particle species, controlled energies at a specific location where a detector can be installed.

How can we increase the energy of a particle?

Use electro-magnetic fields. Can increase the energy of CHARGED particles

Increase energy

$$DE = \int_{\vec{r}_1}^{\vec{r}_2} \vec{F} \, d\vec{r} = q \int_{\vec{r}_1}^{\vec{r}_2} (\vec{E} + \vec{v} \times \vec{B}) \, d\vec{r}$$

The particle trajectory direction dr parallel to v

$$DE = \int_{\vec{r}_1}^{\vec{r}_2} \vec{F} \, d\vec{r} = q \int_{\vec{r}_1}^{\vec{r}_2} \vec{E} \, d\vec{r} = qU$$

- ...increase of energy with electric fields
- (Magnetic fields are needed for control of trajectories.)

The basic accelerator

Electrostatic accelerator:

Charged particles go through the accelerating voltage gap **once** and then hit the target.

Limited by the maximum reachable voltage: ~ 10 MV

Why collisions?

Conservation laws: e.g. momentum and energy conservation

Photon into e⁺,e⁻ only in proximity of nucleus. Nucleus takes part of momentum (and part of available energy...)

- Center-of-mass Frame and Center-of-mass Energy (E_{CM})
 - Center-of-mass frame defined where:

$$\mathring{\mathbf{a}}\vec{p}_i = \vec{0}$$

The energy available for creation of particles corresponds to E_{CM}

The Large Hadron Collider

It is a circular 2-beam accelerator. No targets. Collider.

Passing through accelerating gap of same voltage over and over again.

The Key Concepts for High Energy Accelerators

RF Resonant Acceleration

- Strong Focusing alternating gradient focusing
 - Keep the beam size under control

HISTORY OF ACCELERATORS

Electrostatic Accelerators - 1930s

- Cockcroft-Walton electrostatic accelerator
 - High voltage source by using high voltage rectifier units
 - High voltage limited due to sparking in air. Limit ~ 1 MV

Electrostatic Accelerators

 Limit of 1 MV overcome: placing the electrodes under high pressure gas. Paschen's law

Break down voltage depends on gas pressure and gap between electrodes.

Product of pressure x gap

- → Van De Graaf generator
 - -1-10 MV

Tandem Van de Graaf Generator

...use the accelerating voltage twice

- Up to 25 MV
- Advantages of Van de Graaf:
 - Great variety of ion beams
 - Very good energy precision, small energy spread
- Applications in nuclear physics, accelerator mass spectroscopy,...

RF Acceleration - the Revolution

Electrostatic accelerator limitation: maximum voltage before sparking for acceleration over single gap

- pass through acceleration gap of same voltage many times (Ising)
- 1928 Wideroe: first working RF accelerator

- Particle synchronous with field. In shielding tube when field has opposite sign. Voltage across each cell the same.
- Remark: tubes have to become longer and longer, as particles become faster and faster
- or higher frequency λ = c/f_{RF}
- But radiation power loss: $P = \omega_{RF}CV_{RF}^2$, C gap capacitance

Alvarez Linac or Drift Tube Linac

- Eliminate power loss: drift tube placed in cavity
 - Electromagnetic field oscillating in cavity. Standing wave, TM mode (Iongitudinal E-Field, transverse B-Field)
 - Resonant frequency of cavity = accelerating field frequency
 - Reduce power loss

– Exploit Farraday's law:
$$abla imes ec{E} = -rac{\partial}{\partial t} ec{B}$$

Circular Accelerators

- Linear accelerators can in principle accelerate to arbitrarily high energies.
-but become longer and longer
- → Particles on circular paths to pass accelerating gap over and over again
- → Cyclotron proposed by E.O. Lawrence in 1929 and built by Livingston in 1931.

clotron

Particle Source in the middle

Between the two "Dees" acceleration gap connected to RF source. $\omega_{\rm RF}$ = $\omega_{\rm cyclotron}$

Vertical magnetic field to guide the particles in the horizontal plane. The radius of particle trajectory becomes larger and larger with larger energy

Particles extracted with a deflector magnet or an electrode.

period

$$\vec{F} = q(\vec{E} + \vec{v} \times \vec{B}) \longrightarrow F_L = q \ v \ B \longrightarrow \text{No E}$$
 $F_c = m \frac{v^2}{r} \longrightarrow \text{centrifugal force}$
 $F_L = F_c \longrightarrow \omega = \frac{v}{r} = \frac{qB}{m} \longrightarrow \text{revolution}$

period

Cyclotron Limitation

- Cyclotron frequency is constant for constant mass
- For relativistic particles mass is not constant

$$W = \frac{v}{r} = \frac{Bq}{m} = \frac{Bq}{m(E)}$$

- The classical cyclotron only valid for particles up to few % of speed of light
 - Not useful for electrons...already relativistic at 500 keV
- Possibilities: synchrocyclotrons (change frequency (and magnetic field) with energy) or isochronous cyclotrons (increase magnetic field with r, frequency constant)
- Modern cyclotrons can reach > 500 MeV (PSI, TRIUMF, RIKEN)

Biggest Cyclotron in the world

- RIKEN, Japan
- 19 m diameter, 8 m high
- 6 superconducting sector magnets, 3.8 T
- Heavy ion acceleration
- Uranium ions accelerated up to 345 MeV/u

K. Yamda et al., "Status of the Superconducting Ring Cyclotron at RIKEN RI Beam Factory,

EPAC 2008

PSI cyclotron

Betatron - 1940

Another early circular accelerator

- 1942 6 MeV
- Idea by Wideroe in 1923. Kerst builds the first working betatron in 1940.
- Difference: constant radius and magnetic field changing with time to keep radius constant.
- Accelerating E-field generated through induction, no external E-field
- e⁻ accelerated to 2.3 MeV
- "Betatron" for beta rays (e⁻)

Synchrotron

- Higher and higher energies larger and larger radii, limited B fields cannot stay compact
- Fix trajectory → R = constant; R can be large
- Dipole magnets with field only where the beam is
 - "small" magnets
- R= constant →B field increases synchronously with beam energy
- Synchrotron all big modern machines are synchrotrons

Cosmotron - BNL - 1952 - 3 GeV

3 GeV p+ synchrotron

Particles do many 1000 turns – trajectories have a angular spread → divergence

Need focusing elements. Cosmotron weak focusing machine

Strong Focusing

Idea by E. Courant, M. Livingston, H. Snyder in 1952 and earlier by Christofilos

Alternating gradient focusing

 Analogous to geometrical optics: a series of alternating focusing and defocusing lenses will focus.

$$\frac{1}{F} = \frac{1}{f_1} + \frac{1}{f_2} - \frac{d}{f_1 f_2}$$

$$f_1 \qquad f_2$$
Consider $f_1 = f$, $f_2 = -f$ \Rightarrow $F = f^2/d > 0$

In our case the lenses will be magnets with alternating gradients QUADRUPOLES

The first alternating gradient synchrotrons

Alternating gradient focusing was quickly adopted by synchrotrons and transfer lines.

- 1954: Cornell University, e⁻ accelerated to 1.5 GeV (Wilson et al.)

The following two machines are still in operation.

They use combined function magnets.

- 1959: CERN Proton Synchrotron (PS) accelerated protons to 28 GeV
- 1960: Brookhaven Alternating Gradient Synchrotron (AGS) accelerated protons to 33 GeV

The basic Layout of a Alternating Gradient Synchrotron

Fixed target vs. Colliders

Fixed target vs. Colliders - Center-of-mass Energy

- Center-of-mass Frame and Center-of-mass Energy (E_{CM})

 - The energy available for creation of particles corresponds to E_CM

Center-of-Mass Energy

Transformation to center-of-mass frame: Lorentz transformation

$$p^{\mu}=(E/c,\vec{p})$$
 4-momentum

$$p^{\mu}p_{\mu} = \frac{E^2}{c^2} - \vec{p}^2$$

$$p'^{\mu} = L^{\nu}_{\mu} p^{\nu}$$

Lorentz Transformation

$$p^\mu p_\mu = p'^\mu p'_\mu \qquad {}_{\text{The norm: is Lorentz invariant}}$$

$$\frac{E_{CM}^2}{c^2} - \vec{0}^2 = \frac{E_{tot}^2}{c^2} - \vec{p}_{tot}^2$$
$$\frac{E_{CM}^2}{c^2} = \frac{E_{tot}^2}{c^2} - \vec{p}_{tot}^2$$

E_{CM} in Fixed Target Experiment

$$p_1 = (E_1/c, \vec{p_1})$$
 $p_2 = (m_2c, \vec{0})$

$$p_{tot} = (E_1/c + m_2c, \vec{p}_1)$$

$$E_{CM}^2 = (m_1^2 + m_2^2)c^4 + 2E_1m_2c^2$$

$$E_{CM} \propto \sqrt{E_1}$$

Ecm in Collider Experiment

Laboratory Frame = CM Frame

$$p_1 = (E_1/c, \vec{p_1})$$
 $p_2 = (E_2/c, -\vec{p_1})$

$$E_{CM} = E_1 + E_2$$

→ Collider more energy efficient;
But also more complex: two beams to be accelerated and to be brought into collision

The next step: storage ring colliders

Make use of all the particles' energy. 2-beam synchrotrons.

The first one: Ada (Frascatti), 1961-64, e+,e-, 250 MeV, 3m circumference

Many examples to come at DESY, SLAC, KEK, Fermilab with the Tevatron (980 GeV), BNL with RHIC

1971-1984: ISR (CERN), p+,p+, 31.5 GeV, 948 m circumference

1981-1991: SPS running as SppS, p+, p-, 270 – 315 GeV, 6.9 km circumference; discovery of W and Z Bosons

1989-2000: LEP highest energy electron synchrotron, e+,e-, 104 GeV, 27 km circumference; three generations of quarks, gluons and leptons

2008 - : LHC highest energy proton synchrotron, p+,p+, heavy ions, 6.5 TeV (2.76 TeV per nucleon for ²⁰⁸Pb⁸²⁺); Discovery of Higgs

THE MAIN MAGNETS

How can we keep the particles on a circular trajectory?

Usually use only magnetic fields for transverse control

$$ec{F} = q \cdot (ec{E} + ec{v} imes ec{B})$$
 Lorentz Force

- What is the equivalent E field of B = 1 T?
 - Ultra-relativistic: $|\vec{v}| \approx c \approx 3 \times 10^8 m/s$

$$\begin{array}{ll} F &= q \cdot 3 \cdot 10^8 \frac{m}{s} \cdot 1T \\ &= q \cdot 3 \cdot 10^8 \frac{m}{s} \cdot \frac{Vs}{m^2} \\ &= q \cdot 300 \frac{MV}{m} \end{array} \qquad \qquad \text{Equivalent electric field!!:}$$

→ To guide the particles we use magnetic fields from electro-magnets.

Dipole magnets: guiding magnets

- Vertical magnetic field to bend in the horizontal plane
- Dipole electro-magnets:

$$\vec{F} = q \cdot \vec{v} \times \vec{B}$$

Focusing is mandatory for stability

Define design trajectory with dipole magnets

Trajectories of particles in beam will deviate from design trajectory

- → Focusing
 - Particles should feel restoring force when deviating from design trajectory horizontally or vertically

Focusing with Quadrupole Magnets

- Requirement: Lorentz force increases as a function of distance from design trajectory
- E.g. in the horizontal plane

$$F(x) = q \cdot v \cdot B(x)$$

We want a magnetic field that

$$B_y = g \cdot x$$
 $B_x = g \cdot y$

→ Quadrupole magnet

The red arrows show the direction of the force on the particle

Gradient of quadrupole

$$g = \frac{2\mu_0 nI}{r^2} \left[\frac{T}{m} \right]$$

Normalized gradient, focusing strength

$$k = \frac{g}{p/e}[m^{-2}]$$

Strong focusing

- Initially weak focusing or constant-gradient focusing.
- In early cyclotrons needed to introduce magnet shims to distort the guide field such that it was decreasing with R. A gradient.

Example: bending magnets in the Cosmotron, the first synchrotron.

Apertures very large.

Energy limit was believed to be 10 GeV.

- The new idea: instead of constant-gradient: alternating gradient
- allowed for smaller apertures and much, much higher energies.
- Analogous to geometrical optics with light lenses.

Strong focusing

Light lenses:

In a synchrotron: the lenses are the quadrupoles

Focal length of quadrupole

$$f = \frac{1}{k \cdot l_Q}$$

The LHC FODO cell

- Each LHC arc consists of
- 23 FODO cells

The LHC main quadrupole magnet

- Length = 3.2 m
- Gradient = 223 T/m
- Peak field 6.83 T
- Total number in LHC: 392

LHC quadrupole cross section

Synchrotron

ACCELERATION

LHC superconducting cavities

- 8 cavities per beam in 2 cryo-modules per beam.
- Can deliver 2 MV per cavity. Accelerating field 5 MV/m
- RF frequency: 400 MHz.

Acceleration

- Using RF acceleration: multiple application of the same accelerating voltage.
- Brilliant idea to gain higher energies
- ...but accelerating voltage is changing with time while particles are going through the RF system.
- Longitudinal dynamics

Not all particles arrive at the same time.

Not all particles will receive the same energy gain.

Not all particles will have the same energy.

Acceleration in a Synchrotron

 Synchrotron: there is a synchronous RF phase of the RF field for which the energy gain fits the increase of the magnetic field

Energy gain per turn

Reference particle, synchronous particle

RF synchronism: the RF frequency must be locked to the revolution frequency

$$eV\sin\phi = eV\sin\omega_{RF}t$$

$$\phi = \phi_s = const$$

 $\omega_{RF} = h\omega_{rev}$

h...harmonic number

constant orbit, bending radius

variable magnetic field

Principle of Phase Stability

- Assume the situation where energy increase is transferred into a velocity increase
- Particles P₁, P₂ have the synchronous phase.

 $M_1 \& N_1$ will move towards P_1 => stable $M_2 \& N_2$ will go away from P_2 => unstable (and finally be lost)