German Teachers Programme October 2016

Teilchendetektoren oder: Wie schaut man in den Mikrokosmos?

Jennifer Mertens CERN - Technology Department jennifer.mertens@cern.ch

Vorwort

- Viel ist übernommen aus vorherigen Vorlesungen von Kristof Schmieden und Daniel Münstermann
- Lektüre, die ich sehr empfehlenswert finde: Teilchendetektoren - Grundlagen und Anwendungen von H. Kolanoski und N. Wermes
- Ich habe versucht alle Bilder zu referenzierten
- Falls es Fragen oder Hinweise gibt, dann immer raus damit! Hier oder später auch per Mail.

Worum geht es die nächsten 90 Minuten?

- Welche Teilchen können wir überhaupt messen?
- Wechselwirkung von Teilchen mit Materie
- Was können wir messen und wie hilft uns das beim Nachweis von Teilchen? -> Detektionsprinzipien
- Welche Detektortypen gibt es?
- Das ganz große Ganze: Detektorsysteme

Prolog: Einheiten

- Elementarladung: $e = 1,602 \ 176 \ 6208 \cdot 10^{-19} \ C$
- Energieeinheit eV: $1 \text{ eV} = 1,602 \ 176 \ 6208 \cdot 10^{-19} \text{ J} (\text{CV})$
- Masse eines Elektrons: 9.1.10⁻³¹ kg
- Ruheenergie ($E_0 = m \cdot c^2$) Elektron: 8.2·10⁻¹⁴ J (kg·m²/s²) = 511 keV
- Oft 511 keV als Angabe f
 ür die Masse des Elektrons, obwohl es nat
 ürlich genauer 511 keV/c² hei
 ßen sollte.
- Häufig verwendet: MeV, GeV, TeV
 wobei c = 1 (und h-quer = 1) gesetzt wird

Teilchendetektoren - GTP Oct 2016

Prolog: Teilchen zerfallen

Fast alle bekannten Teilchen zerfallen

n (939 MeV) → p⁺ (938 MeV) + e⁻ (0,5 MeV) τ = 15 min μ⁻ (106 MeV) → e⁻ (0,5 MeV) + \overline{v}_e + v_μ τ = 2·10⁻⁶ s

Mittlere Flugstrecke bis Zerfall hängt von der Geschwindigkeit ab:

 $d = v \cdot \tau$ bzw. relativistisch in unserem Fall: $d = c \cdot \tau \cdot \gamma$

mit $\gamma = (1 - v^2/c^2)^{-1/2}$

Teilchendetektoren - GTP Oct 2016

Prolog: Der Teilchenzoo (Teil 1)

Leptonen: e^{\pm} (0.511), μ^{\pm} (105.7), τ^{\pm} (1777) (alle Massen in MeV!)

Neutrinos (Masse klein, aber > 0): v_e , v_e , v_μ , v_μ , v_τ , v_τ

Quarks: u (2.3), d (4.8), s (95), c (1275), b (4180), t (173070)

Bosonen: γ (<10⁻²⁴), g (0), W± (80385), Z0 (91187), H0 (125900)

Baryonen:

 p^{*} (938.3), n (939.6), N(1440), N(1520), N(1535), N(1650), N(1675), N(1680), N(1700), N(1710), N(1720), N(1875), N(1900), N(2190), N(2220), N(2250), N(2600), Δ(1232), Δ(1600), Δ(1620), Δ(1700), Δ(1905), Δ(1910), Δ(1920), Δ(1930), Δ(1950), Δ(2420), Λ (1116), Λ(1405), Λ(1520), Λ(1600), Λ(1670), Λ(1690), Λ(1800), Λ(1810), Λ(1820), Λ(1830), Λ(1890), Λ(2100), Λ(2110), Λ(2350), Σ⁺ (1189), Σ0 (1193), Σ⁻ (1197), Σ(1385), Σ(1660), Σ(1670), Σ(1750), Σ(1775), Σ(1915), Σ(1940), Σ(2030), Σ(2250), Ξ0 (1315), Ξ (1322), Ξ(1530), Ξ(1690), Ξ(1820), Ξ(1950), Ξ(2030), Ω- (1672), Ω(2250)-, Λ+c (2286), Λc(2295), Λc(2295)+, Λc(2625)+, Λc(2880)+, Λc(2940)+, Σc(2455), Σc(2520), Σc(2800), Ξ+c (2468), Ξ0c (2471), Ξ'+c (2576), Ξ'0c (2578), Ξc(2645), Ξc(2790), Δb(5920)0, Σb (5811), Σ*b (5832), Ξ0b (5788), Ξ-b (5791), Ξb(5945)0, Ω-b (6071)

Prolog: Der Teilchenzoo (Teil 1)

Mesonen:

 π^{\pm} (139.6), π° (135.0), η (547.9), σ (400-550), ρ (770), ω (782.7), η' (957.8), f0 (990), a0 (980), ϕ (1019), h1 (1170), b1 (1229), a1 (1230), f2 (1275), f1 (1282), η (1295), π (1300), a2 (1318), f0 (1370), π 1 (1400), η (1409), f1 (1426), ω (1400-1450), a0 (1474), ρ (1465), η (1476), f0 (1505), f'2 (1525), π 1 (1662), η 2 (1617), ω (1670), ω 3 (1667), π 2 (1672), ϕ (1680), ρ 3 (1689), ρ (1720), f0 (1720), π (1812), ϕ 3 (1854), π 2 (1895), f2 (1944), f2 (2011), a4 (1996), f4 (2018), ϕ (2175), f2 (2297), f2 (2339)

K± (493.7), K0 (497.6), K0S, K0L, K* (891.7), K1 (1272), K1 (1403), K* (1414), K*0 (1425), K*2 (1426), K* (1717), K2 (1773), K*3 (1776), K2 (1816), K*4 (2045) D± (1870), D0 (1865), D*(2007)0, D*(2010)±, D*0(2318)0, D1(2420)0, D*2(2463)0, D*2(2464)±, D±s (1969), D*s± (2112), D*s0(2317)±, Ds1(2460) ±, Ds1(2535) ±, D*s2 (2572), D*s1(2709)±

B± (5279), B0 (5280), B* (5325), B1(5724)0, B*2(5743) 0, B0s (5367), B*s (5415), Bs1(5829)0, B*s2(5840)0, B±c (6275), $\eta c(1S)$ (2984), J/ $\psi(1S)$ (3097), $\chi c0(1P)$ (3415), $\chi c1(1P)$ (3511), hc(1P) (3525), $\chi c2(1P)$ (3556), $\eta c(2S)$ (3639), $\psi(2S)$ (3686), ψ (3373), X (3872), $\chi c0(2P)$ (3918), $\chi c2(2P)$ (3927), ψ (4039), ψ (4153), X (4250), X (4361), ψ (4421), X (4664), Y(1S) (9460), $\chi b0(1P)$ (9859), $\chi b1(1P)$ (9893), hb(1P) (9899), $\chi b2(1P)$ (9912), Y(2S) (10023), Y(1D) (10174), $\chi b0(2P)$ (10233), $\chi b1(2P)$ (10255), $\chi b2(2P)$ (10269), Y(3S) (10355), $\chi b(3P)$ (10534), Y(4S) (10579), Y (10876), Y (11019)

Welche Teilchen können wir nachweisen?

Nur die, die lange genug leben, um unseren Detektor zu erreichen, also namentlich:

 $\Sigma^+, \Sigma^-, \Xi^0, \Xi^-, \Omega^-$

c * τ > 500 µm für γ = 20: Reichweiten zwischen 13km (µ) und 0,5 m (K⁰s) (∞ für p & γ)

> Typischer γ Faktor: 10 - 1 000

Teilchendetektoren - GTP Oct 2016

Leptonen: elektromagnetisch und schwach Hadronen: elektromagnetisch, schwach und stark

Teilchendetektoren - GTP Oct 2016

Leptonen: elektromagnetisch und schwach Hadronen: elektromagnetisch, schwach und stark

Leptonen: elektromagnetisch und schwach Hadronen: elektromagnetisch, schwach und stark

Teilchendetektoren - GTP Oct 2016

Leptonen: elektromagnetisch und schwach Hadronen: elektromagnetisch, schwach und stark

Leptonen: elektromagnetisch und schwach Hadronen: elektromagnetisch, schwach und stark

Leptonen: elektromagnetisch und schwach Hadronen: elektromagnetisch, schwach und stark

EM Wechselwirkung

Leptonen: elektromagnetisch und schwach Hadronen: elektromagnetisch, schwach und stark

EM Wechselwirkung

Leptonen: elektromagnetisch und schwach Hadronen: elektromagnetisch, schwach und stark

EM Wechselwirkung

Leptonen: elektromagnetisch und schwach Hadronen: elektromagnetisch, schwach und stark

EM Wechselwirkung

Leptonen: elektromagnetisch und schwach Hadronen: elektromagnetisch, schwach und stark

EM Wechselwirkung

Wechselwirkung geladener Teilchen

- Durch die Bethe-Bloch- Formel beschrieben
 - Ausnahme: Elektronen (kleine Ruhemasse)
- Merke: Große Ionisationsverluste bei niedrigen Energien Minimum bei o(GeV) => MIP

Detektionsprinzipien

bzw. was davon können wir eigentlich messen?

Teilchendetektoren - GTP Oct 2016

Zu welchen Messgrößen haben wir Zugang?

- Strom (z.B. über die Ladezeit eines Kondensators)
- Spannung
 (z.B. über Analog zu Digital Konvertern (ADCs))
- **Temperatur** (z.B. über Materialausdehnung bzw ADCs)
- Ladung (z.B. über Spannung eines Kondensators)
- Zeit (z.B. über das Zählen von clock cycles)
- Ort (wenn man weiß, wo welcher Detektor steht)

Teilchendetektoren - GTP Oct 2016

Nachweis von Teilchen

- Direkter Nachweis: Teilchen "pflügt" durchs Medium und ionisiert es. Dann:
 - Rekombination ggf. unter Emission von Licht (Szintillation)
 - Anlegen einer Spannung verhindert Rekombination und gesammelte Ladung kann gemessen werden (vom Zählrohr bis zum Halbleiterdetektor)
- Indirekter Nachweis:
 - Photonen (Gammas, Röntgenstrahlung): Umwandlung in Elektronen durch Photoeffekt, Comptoneffekt, Paarbildung
 - Neutronen: Nachweis üblicherweise durch Einfang im Atomkern => Emission von geladenen Teilchen
 - Neutrinos: Streuung oder Einfang erzeugen wieder geladene Teilchen

Szintillatoren

- Im Detail komplex, aber allen Szintillatoren ist gemein, dass sie einen (sehr kleinen) Teil der deponierten Energie als Lichtquanten wieder abstrahlen
 - Anorganische Kristalle: Z.B. Nal, Csl, BGO, PbWO4. Eher langsam, hohe Lichtausbeute. Teilweise recht strahlenhart.
 - Organisch: Als Kristall, aber auch als Plastik oder flüssig. Schnell, geringere Lichtausbeute. Eher nicht strahlenhart. In vielen Formen erhältlich, teilweise recht preiswert.
 - Edelgase (!) szintillieren auch, dies wird tatsächlich genutzt...
 - Eher exotisch: Szintillierende Gläser, z.B. Li/B-Silikate für Neutronennachweis

Teilchendetektoren - GTP Oct 2016

Wie messen wir Photonen/Licht?

• Das hängt stark vom Energiebereich ab:

http://www.vikdhillon.staff.shef.ac.uk/ teaching/phy217/instruments/pmt.jpg

Sichtbar - UV: über PMTs (photo multiplier tubes)
 Sekundärelektronenvervielfacher... Licht -> Strom

Vorteile: Gute Effizienzen, große Flächen. Nachteile: "Handarbeit", teuer, groß.

Teilchendetektoren - GTP Oct 2016

Wie messen wir wenig Licht?

- Sichtbar UV in modern: Silizium-Photomultiplier (SiPMs, MPPCs)
 - Erzeugen die Elektronenvervielfachung durch den kontrollierten Lawinendurchbruch einer Silizium-Diode
 - Vorteile: Industriell gefertigt, kompakt, niedrige Spannungen, hohe Granularität durch (sehr) viele Kanäle möglich
 - Nachteile: Teilweise hohe Dunkelrate, geringere Effizienz

Teilchendetektoren - GTP Oct 2016

Photodiode:

Dünne p dotierte Schicht (wenige µm), Licht dringt bis zum pn Übergang vor. Dann passiert innerer Photoeffekt.

- Strom- (Ladungs-) Signal proportional zur Lichtintensität
- Im Array angeordnet:
 - Auslese nur in letzter Zeile Transport der Ladung entlang der Spalten
 - Charged coupled device (CCD)

Teilchendetektoren - GTP Oct 2016

<u>Source</u>

Photodiode:

Dünne p dotierte Schicht (wenige µm), Licht dringt bis zum pn Übergang vor. Dann passiert innerer Photoeffekt.

- Strom- (Ladungs-) Signal proportional zur Lichtintensität
- Im Array angeordnet:
 - Auslese nur in letzter Zeile Transport der Ladung entlang der Spalten
 - Charged coupled device (CCD)

Teilchendetektoren - GTP Oct 2016

Photodiode:

Dünne p dotierte Schicht (wenige µm), Licht dringt bis zum pn Übergang vor. Dann passiert innerer Photoeffekt.

- Strom- (Ladungs-) Signal proportional zur Lichtintensität
- Im Array angeordnet:
 - Auslese nur in letzter Zeile Transport der Ladung entlang der Spalten
 - Charged coupled device (CCD)

Ladungsverschiebung mit Hilfe eines Charge-Coupled Device (CCD)

Teilchendetektoren - GTP Oct 2016

Photodiode:

Dünne p dotierte Schicht (wenige µm), Licht dringt bis zum pn Übergang vor. Dann passiert innerer Photoeffekt.

- Strom- (Ladungs-) Signal proportional zur Lichtintensität
- Im Array angeordnet:
 - Auslese nur in letzter Zeile Transport der Ladung entlang der Spalten
 - Charged coupled device (CCD)

Ladungsverschiebung mit Hilfe eines Charge-Coupled Device (CCD)

Teilchendetektoren - GTP Oct 2016

Photodiode:

Dünne p dotierte Schicht (wenige µm), Licht dringt bis zum pn Übergang vor. Dann passiert innerer Photoeffekt.

- Strom- (Ladungs-) Signal proportional zur Lichtintensität
- Im Array angeordnet:
 - Auslese nur in letzter Zeile Transport der Ladung entlang der Spalten
 - Charged coupled device (CCD)

Teilchendetektoren - GTP Oct 2016

J. Mertens

Ladungsverschiebung mit Hilfe eines Charge-Coupled Device (CCD)

Photodiode:

Dünne p dotierte Schicht (wenige µm), Licht dringt bis zum pn Übergang vor. Dann passiert innerer Photoeffekt.

- Strom- (Ladungs-) Signal proportional zur Lichtintensität
- Im Array angeordnet:
 - Auslese nur in letzter Zeile Transport der Ladung entlang der Spalten
 - Charged coupled device (CCD)

Ladungsverschiebung mit Hilfe eines

Teilchendetektoren - GTP Oct 2016

Jetzt aber mal zur Hochenergie!

- Grundlegendes Prinzip: Ladung wird durch Anlegen eines Feldes zu Elektroden gedriftet und dort mittels geeigneter Elektronik nachgewiesen
 - ▶ gut bei großen Ladungsmengen, aber einzelne Elektronen? ➡ Verstärkung
- Betriebsmodi:
 - Ionisationskammer (einfaches Sammeln)
 - Proportionalzählrohr (Gasverstärkung)
 - proportionale Verstärkung, Erhaltung der primären Ladungsinformation!
 - Geiger-Müller-Zählrohr (vollständiges "Zünden" des Gasvolumens)

Verlust der Ladungsinformation, sehr großes Signal

Teilchendetektoren - GTP Oct 2016

J. Mertens

Practical Gaseous Ionisation Detector Regions

Wo kann man driften?

- Ursprünglich: Gase, teilweise Erhöhung der Dichte durch Überdruck
- Flüssigkeiten:
 - Deutlich höhere Dichte, aber höchste Reinheit nötig! Verstärkung schwierig: Ionenkammer oder 2-Phasen-Systeme mit Gasverstärkung
 - Häufig tiefkalte Edelgase (Argon, Xenon), aber auch Flüssigszintillatoren

- Festkörper
 - Kristalline Isolatoren als Festkörperionisationskammer sehr geeignet: Diamant (!), Cd(Zn)Te
 - Alternativ: Halbleiter wie Silizium und Germanium. Betrieb als Diode in Sperrichtung notwendig, um das Rauschen durch den Leckstrom zu begrenzen

Teilchendetektoren - GTP Oct 2016

Strahlungsdetektoren - die Exoten I

- Wir sind beinahe fertig mit den Vorarbeiten, aber zwei Effekte fehlen noch, die zur Teilchenidentifikation benutzt werden:
- Cherenkov-Strahlung: Wird emittiert, wenn sich ein geladenes Teilchen schneller als mit Lichtgeschwindigkeit bewegt
 - Einstein?!? Kein Problem, in Medien (z.B. Wasser) ist Lichtgeschwindigkeit < c
 - Effekt ist massenabhängig -> Teilchenseparation
 - Lichtdetektion wieder mit (Si)PMs

Teilchendetektoren - GTP Oct 2016

Strahlungsdetektoren - die Exoten II

- Cherenkov-Strahlung: Wird emittiert, wenn sich ein geladenes Teilchen schneller als mit Lichtgeschwindigkeit bewegt
- Übergangsstrahlung: Wird emittiert, wenn ein (relativistisches) Teilchen durch einen Übergang im Brechungsindex zwischen zwei Materialien tritt
 - Verschiedene Erklärungsansätze, z.B. elektrisches Feld des Teilchens ist in den beiden Medien unterschiedlich, muss aber kontinuierlich übergehen -> Abstrahlung von Photonen
 - Energie im Bereich von keV (Röntgen)
 - Emittierte Intensität ist proportional zum Lorentzfaktor, daher bei bekannter Teilchenenergie Schluss auf die Teilchenmasse möglich

Teilchendetektoren - GTP Oct 2016

Welche Detektortypen gibt es?

Viel zu viele für einen Talk... Also hier nur ein Auszug

Teilchendetektoren - GTP Oct 2016

Historisch: Nicht-elektronische Detektoren

- Nebelkammer: Teilchenbahn sichtbar durch Kondensationskeime entlang erzeugter Ionen in wasserdamfgesättigtem Gas
- Blasenkammer: Ionisationsspur sichtbar durch überhitzte Flüssigkeit (Target = Detektor)
- Fotoemulsion: ionisierende Teilchen hinterlassen Schätzung nach Entwicklung. Bis heute die beste Ortsauflösung, die man bekommen kann

Historisch: Geigerzähler und Funkenkammer

- Geiger-Müller-Zählrohr:
 - Vorteile: großes Signal, einfach
 - Nachteile: keine Information über deponierte Energie, große Totzeit
- Funkenkammern:
 - ungefähr zeitgleich mit Blasenkammer
 - kann mit Hilfe externer Z\u00e4hler getriggert werden
 - Auswertung über Fotografie oder über Aufnahme der Ankunftszeiten in Mikrofonen
 - Aber auch hier große Totzeit

Teilchendetektoren - GTP Oct 2016

Heute verwendete Detektoren - Gas

- Driftkammern (z.B. in UA1): 170k field, 6.1k sense wires
- MWPCs (multi wire projection chambers) Nobelpreis 1992
 - Weiterentwicklungen: Microstrip Gas Detektoren GEMs (gas electron multiplier) und MICROMEGAS (micro-mesh gaseous structure)
- TPCs (z.B. in ALICE)

Time Projection Chambers (TPCs)

Multi-Wire-

Source

Cathod

Proportional-Chambers (MWPC)

Spur eines Teilchens (z.B. Myon)

Incident Particle

Heute verwendete Detektoren - Festkörper

diamond

Halbleiter: z.B. Silizium Streifen und Pixel

pixel metalization

flip chip

bonding

pixel readout

electronics chip

Vergrößerung der Verarmungszone durch Gegenspannung

29

- Isolatoren:
 z.B. Diamant
- Typischer Weise hybride Bauform

Teilchendetektoren - GTP Oct 2016

THE HYBRID PIXEL DETECTOR

J. Mertens

back plane

Heute verwendete Detektoren - Kalorimeter

- Echte Kalorimetrie: Messung der Erwärmung
 - Meist unmöglich, wird aber in einigen Experimenten tatsächlich genutzt (CUORE)
- Homogene Kalorimeter: Schauer stoppt komplett in aktivem Volumen
 - z.B. CMS PbWO4 ECAL, Neutrino-Szintillator- Experimente wie Borexino
 - Prinzipiell gute Energieauflösung (komplette Energie wird "gesehen"), aber wenig/keine Tiefenauflösung
- Sandwich-Kalorimeter: Wechsel von passivem Absorber und aktiven Lagen
 - z.B. ATLAS LAr ECAL, sämtliche hadronischen Kalorimeter
 - Meist Szintillator in Verbindung mit einem dichten Absorber (Eisen, Blei, Wolfram, Uran (!))

Metal Slabs

Shower of Particles

Teilchendetektoren - GTP Oct 2016

Detektorsysteme

Und jetzt alle zusammen...

Teilchendetektoren - GTP Oct 2016

Was wissen wir bisher?

- Welche Teilchen fliegen weit genug?
- Wie wechselwirken diese mit Materie?
- Welche Detektoren kann ich aus der Materie bauen?
- Das meiste geht durch Spurdetektoren durch
- Zur Energiemessung müssen wir die Teilchen stoppen
- Myonen fliegen durch so ziemlich alles durch

Der universelle Detektor - z.B. CMS

 Ziel: Miss möglichst viele Eigenschaften möglichst aller Teilchen, die weit genug fliegen…

Wozu haben wir Zugang?

- Impuls aus Krümmungsradius beim Durchgang durch Spurdetektor
- Ladung aus Krümmungsrichtung beim Durchgang durch Spardetektor auf Grund des Solenoidmagnetfeldes
- Energie aus Schauergeometrie im Kalorimeter
- Teilchensorte aus typischer Kombination einzelner Subdetektoren
- (invariante) Masse aus Energieerhaltung
- Häufigkeiten eines Events (cross sections) durch Zählen

Teilchendetektoren - GTP Oct 2016

Wozu haben wir Zugang?

- Teilchensorte aus typischer Kombination einzelner Subdetektoren
- (invariante) Masse aus Energieerhaltung
- Häufigkeiten eines Events (cross sections) durch Zählen

Teilchendetektoren - GTP Oct 2016

Wozu haben wir Zugang?

 10^{4}

 10^{3}

1

ATLAS Preliminary

Data 2010,√s= 7 TeV

10

L ≈ 3.0 pb⁻¹

 10^{2}

- Impuls aus Krümmu Durchgang durch S
- Ladung aus Krümm ^b/₂ ^{10²} Durchgang durch S ⁰/₂ ₁₀ des Solenoidmagne
- Energie aus Schaue

- (invariante) Masse aus Energieerhaltung
- Häufigkeiten eines Events (cross sections) durch Zählen

Entscheiden, was interessant ist -> Trigger

- Manche Dinge passieren eher selten, sodass man nur auslösen möchte, wenn wirklich was passiert
- Zum Beispiel kosmische Myonen: Fluss ~100/m²/s

Teilchendetektoren - GTP Oct 2016

Entscheiden, was interessant ist -> Trigger

- Und manchmal passiert so viel, dass man heraus filtern möchte, wo man interessante Physik vermutet
- In ATLAS eher so 40 Millionen Kollisionen pro Sekunde mit ~50 interagierenden Protonen pro Kollision -> O(TB) an Daten pro Sekunde

J. Mertens

36

Und was macht man mit den Daten?

https://www.nikhef.nl/typo3temp/pics/507688ece4.png

Master Classes!

- Analyse von Event-Displays in der Schule
- Oder im etwas größeren Stile:
 - Analyse von Spuren in dedizierten Frameworks im Computing Grid
 - Und mit etwas Glück findet man sogar etwas

CERN

Luftschauer

Teilchendetektoren - GTP Oct 2016

Hajo Drescher, Frankfurt U.

time = -400 µs

Hajo Drescher, Frankfurt U.

time = -400 µs

Hajo Drescher, Frankfurt U.

blue:electrons/positrons cyan:photons red:neutrons orange: protons gray: mesons green:muons

time = -400 µs

Hajo Drescher, Frankfurt U.

blue:electrons/positrons cyan:photons red:neutrons orange: protons gray: mesons green:muons

time = -300 µs

Hajo Drescher, Frankfurt U.

blue:electrons/positrons cyan:photons red:neutrons orange: protons gray: mesons green:muons

time = -200 µs

Hajo Drescher, Frankfurt U.

blue:electrons/positrons cyan:photons red:neutrons orange: protons gray: mesons green:muons

time = -100 µs

Hajo Drescher, Frankfurt U.

blue:electrons/positrons cyan:photons red:neutrons orange: protons gray: mesons green:muons

time = $0 \mu s$

Hajo Drescher, Frankfurt U.

blue:electrons/positrons cyan:photons red:neutrons orange: protons gray: mesons green:muons

time = 100 µs

Hajo Drescher, Frankfurt U.

blue:electrons/positrons cyan:photons red:neutrons orange: protons gray: mesons green:muons

Hajo Drescher, Frankfurt U.

blue:electrons/positrons cyan:photons red:neutrons orange: protons gray: mesons green:muons

Luftschauer messen

 z.B. im Energiebereich von 10¹⁷ eV bis 10²⁰ eV mit 1200 Cherenkov & 26 Fluoreszenz Detektoren im Pierre Auger Observatory in Argentinien auf 3000 km² Fläche

http://www.fnal.gov/pub/today/images/images09/DSC01129PierreAugerObservatory.jpg

Teilchendetektoren - GTP Oct 2016

Luftschauer messen

 oder mit MAGIC Teleskopen auf La Palma auf der Suche nach kosmischer Gammastrahlung im Bereich zwischen 30 GeV und 30 TeV (dunkle Materie, schwarze Löcher, Neutronensterne)

Teilchendetektoren - GTP Oct 2016

Luftschauer messen -> Neutrinos

 z.B. in SuperKamiokande erzeugen hochenergetische Neutrinos je nach Flavour Elektronen oder Myonen durch Umwandung von Protonen bzw. Neutronen in 50kt Wassertank mit > 11k PMTs:

 $v_e + n \rightarrow e^- + p \quad \overline{v}_e + p \rightarrow e^+ + n \quad v_\mu + n \rightarrow \mu^- + p \quad \overline{v}_\mu + p \rightarrow \mu^+ + n$

http://i0.wp.com/www.universetoday.com/wp-content/uploads/2008/05/neutrino.jpg

Zusammenfassung

- Detektorphysik ist eine eigene Disziplin und hat sehr häufig den Erkenntnisgewinn in anderen Feldern (Teilchenphysik, Kernphysik, aber auch im Bereich der Röntgenstreuung) erst möglich gemacht.
- Obwohl es bereits sehr viele spezialisierte Detektoren gibt, läuft die Forschung auf Hochtouren:
 - HL-LHC wird die Okkupanzen und Strahlenschäden um einen Faktor 5 nach oben treiben
 - ILC/CLIC benötigen ein unglaublich gutes Kalorimeter und einen quasi masselosen Spurdetektor
- In der Neutrinophysik arbeitet man an Detektoren, deren Masse in Kilotonnen (Szintillator, LAr) oder gar Megatonnen (Wasser-Cherenkov) gemessen wird

Neue technische Entwicklungen im Detektorbereich werden sicherlich auch wieder neue Durchbrüche in der Teilchenphysik und anderen Disziplinen (z.B. Medizinphysik) ermöglichen.

Source

Vielen Dank für Ihre Aufmerksamkeit

Gibt es Fragen?

Teilchendetektoren - GTP Oct 2016