

Materials for extreme thermal management (PowerMat)

A. Rossi, M. Tomut, A. Bertarelli, L. Peroni, A. Lechner with thanks to F. Carra and S. Redaelli

From EuCARD-2 to ARIES

Accelerator

Research and

Innovation for

European

Science and Society

- New proposal for the call H2020 INFRAIA-01-2016-2017 submitted on 30 March 2016
- Continuation of some EuCARD-2 activities, start of new ones.
- Requested EC funding 10 M€, total budget 24.8 M€ (42% funding rate).
- 18 Workpackages (MGT, 7 Network Activities, 5 Transnational Access Workpackages, 5 Joint Research Activities).
- 42 partners from 18 EU countries (+CERN and ESS); coordination by CERN.

M.Vretenar, EuCARD2 Annual meeting, Malta, 2016

M.Vretenar, EuCARD2 Annual meeting, Malta, 2016

HORIZON 2020

PowerMat WP Objectives

- Optimization of carbide-graphite composite materials with respect to radiation hardness for LHC collimator system upgrade, exploring properties with new doping.
- Development of a carbon-based composite materials for high power target with improved resistance to short, intense pulse ion beamdriven shock waves.
- Testing and optimization and of diamond-metal matrix composites for applications as luminescence screens for high intensity beams (optimization will be performed as a function of beam-induced luminescence signal by changing diamond doping, to beam-induced shock resistance by using special light alloys and to diamond-matrix interface by using special additions).

PowerMat WP Description

Comprehensive and integrated R&D activity, including:

- Investigation, development, manufacturing, characterization, testing and integration of novel Ceramic Matrix and Metal Matrix Composites based on graphite and diamond reinforcements.
- Development of new experimental methods to test materials at energy density conditions relevant for accelerators beyond LHC (e.g.FCC) in more accessible experimental areas and producing less activation.
- Development of new monitoring techniques for online tests of radiationinduced material degradation.
- Simulating behavior of novel composites at very high strain rates.
- Exploring challenging and/or unconventional applications of such materials for high power accelerators and society.

PowerMat WP Innovations

- Thermomechanical dynamic testing under very high intensity laser pulses and laser-driven particle beams, extending the energy density frontier of particle beam testing beyond facilities such as HiRadMat and avoiding problems such as activated debris.
- Study of ion-induced color centers in diamond for quantum computing applications.
- Prediction of radiation-induced microstructural damage and studies of methods to mitigate and cure such effects.
- Application to particle accelerator devices beyond collimators (e.g. novel luminescence screens for high intensity beams, beam windows, high power targets and beam catchers...).
- Exploration of demanding thermal management applications such highend electronics, avionics, gas turbines, aerospace, advanced braking systems.

PowerMat WP Organisation

2020

The WP is organized in the following tasks:

- 1. Communication & Coordination (A. Rossi CERN, M. Tomut GSI)
- 2. Materials development and characterization (A. Bertarelli – CERN)
- 3. Dynamic testing and online monitoring (L. Peroni POLITO)
- 4. Simulation of irradiation effects and mitigation methods (A. Lechner – CERN)
- 5. Broader accelerator and societal applications (M. Tomut GSI)
- Within WP1 (Task 1.4) Industries for resistant materials (A. Rossi – CERN) 16 November 2015

PowerMat Participants

	Laboratories	
1	CERN	Geneva, Switzerland
2	ELI-NP (Extreme Light Infrastructure – Nuclear Physics)	Bucharest-Magurele, Romania
3	GSI	Darmstadt, Germany
4	POLIMI	Milan, Italy
5	POLITO	Turin, Italy
6	UM	Malta
Х	NIMP (National Institute of Materials Physics)*	Bucharest, Romania
	Industries (in WP1 Innovation)	
Χ	Brevetti Bizz	Verona, Italy
Х	RHP Technology	Seibersdorf, Austria

* Participating as associated (subcontractor)

Task 2 description

Task 2: Materials development and characterization (A. Bertarelli – CERN)

- Research, investigation, development, manufacturing, characterization of novel CMC and MMC based on graphitic, carbide or diamond reinforcements.
 Continuous material optimization will be fostered by the feedbacks provided by tasks 3 and 4.
- Study and development of electrically conductive coatings, resisting the impact of high intensity particle beams.
- Characterization of thermophysical properties measurements, microstructural analyses (SEM, XRD, EDS ...), study of phases and of their change under various environments ...

Participants: CERN, GSI, NIMP, POLIMI, POLITO, UM, Brevetti Bizz, RHP Technology

Task 3 description

- Task 3: Dynamic testing and online monitoring (L. Peroni – POLITO)
- Testing of material samples in a broad range of environments:
- Mechanical testing in quasi-static and dynamic conditions, at various temperatures
- Tests under very high power laser beams (GSI, ELI-NP)
- Irradiation tests with online monitoring of properties evolution (GSI)
- Hydrodynamic simulations of experiments EOS, spall strengths for new materials

Participants: CERN, ELI-NP, GSI, POLIMI, POLITO

Task 4 description

Task 4: Simulation of irradiation effects and mitigation methods (A. Lechner – CERN)

- Simulations on the degradation due to irradiation, ions (with ion tracks) and protons bombardment.
- Understand effect of time of energy deposition on damage and property degradation, taking into account dose rate and dynamical annealing effects for high intensity beams.
- Include effects of nuclear transmutations and gas production.

Participants: CERN, GSI, POLIMI

This task will contribute as well to an extra European collaboration (RaDIATE -<u>Radiation Damage In Accelerator Target Environment</u>), aimed at understanding the effects of radiation on material

Task 5 description

Task 5: Broader accelerator and societal applications (M. Tomut – GSI)

This task will follow broader applications of new developed materials for highpower accelerators, space, society (energy, medicine, computing)

- Irradiation induced defect centers in diamond for luminescent screens and quantum computing.
- Novel materials for high power targets, beam catchers, beam windows.
- Applications for advanced engineering solutions, efficient energy solutions, space.
- Applications for thermal management.

Participants: CERN, GSI, Brevetti Bizz, RHP Technology

TASK	Lab-Ind	Person•month	From EU (k€)
1. Communication & Coordination	GSI	7	15
	CERN	7	15
2. Materials development and	CERN	36	55 (Meas)
characterization	GSI	16	70 (PhD +30 subc)
	POLITO	5	20 (studies - meas)
	UM	20	50 (studies, part PhD)
3. Dynamic testing and online monitoring	CERN	4	-
	GSI	16	100 (PhD+irradiation)
	POLITO	45	100 (analysis-meas)
	POLIMI	50	80 (PhD)
	ELI-NP	10	30 (laser: target/cons.)
4. Simulation of irradiation effects and	CERN	30	30 (studies)
mitigation methods	GSI	1	10 (studies)
	POLIMI	4	10
5. Broader accelerator and societal	CERN	1	5
applications	GSI	3	20 (subc.)
		255	645

Deliverables

- Task 17.2) Comparative compendium of the developed materials [month 40]
- Task 17.4) Report on simulations on irradiation effects [month 44]
- Task 17.3) Irradiation test results: Beam impact on new material and composite [month 48]
- Task 1.4) Production of material samples (as large as possible for each industry to demonstrate workability) [month 24]

Milestones

- Task 17.1) Organisation of PowerMat kick-off meeting, with publication of talks on Web [month 6]
- Task 17.2) Material characterisation, with publication of results on Web [month 18-24]
- Task 17.3) Irradiation, with publication of report on web[month 27]
- Task 17.4) Irradiation effects analysis, with publication of report on web[month 36]
- Task 17.5) Report on studies, with publication of report on web, [month 46]
- Task 1.4) Prepare first samples [month 12]

Deliverables and Milestones Gannt-Chart

Task	Year 1			Year 2			Year 3			Year 4						
	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4
17.1		Μ														
17.2							Μ						D			
17.3									Μ							D
17.4												Μ		D		
17.5																Μ
1.4				Μ				D								

PowerMat WP summary

Objectives:

Study and development of graphitic materials and electrically conductive coatings, resisting the impact of high intensity particle beams: aiming at electrical conductivity of 2.5MS/m (10 times normal graphite and 2.5 times what presently achieved), with robustness to beam impacts of the order of 3MJ, and resistance to radiation to at least a fraction of a DPA (displacement per atom).

Develop new diamond-metal matrix composites luminescence screens capable of operating at intensities 1 or 2 orders of magnitude larger than the actual Cr doped Al2O3 screens ($10^9 - 10^{10}$ heavy ions/cm²).

		Personnel (person • month)	Total costs (d.+ ind.) (k€)	Eu contribution (k€)	%	
1 CERN	1	78	636	85	> 50	
2 ELI-N	IP	10	86	50	50	· – CERN)
3 GSI		43	447.5	200 (+50)	50	
4 POLI	MI	54	276	90	> 50	CERN)
5 POLI	то	50	298	120	50	
6 UM		20	131	50	> 50	
- NIM	D			(50)	(associate)	
total			255	645		

Budget & Personnel by Participant

		Personnel (person • month)	Total costs (d.+ ind.) (k€)	Eu contribution (k€)	%
1	CERN	78	636	85	> 50
2	ELI-NP	10	86	50	50
3	GSI	43	447.5	200 (+50)	50
4	POLIMI	54	276	90	> 50
5	POLITO	50	298	120	50
6	UM	20	131	50	> 50
-	NIMP (associate)			(50)	
	total	255	1895	645	

