

Overview of scenarios where new materials are needed

R. Bruce, N. Biancacci, E. Quaranta, S. Redaelli, A. Rossi, B. Salvant, CERN collimation team

Why new collimator materials?

- LHC collimation is working well
- HL-LHC coming do we need to change anything in the collimation system?

	Nominal	HL-LHC baseline
Beam energy	7 TeV	7 TeV
Bunch intensity	1.15e11	2.2e11
Number of bunches	2808	2748
Total stored energy	362 MJ	678 MJ
Normalized emittance	3.75 µm	2.5 µm
β*	55 cm	15 cm
Theoretical peak luminosity (without crab cavities)	1.0e34 cm ² s ⁻¹	7.2e34 cm ² s ⁻¹
Leveled luminosity		5e34 cm ² s ⁻¹

• Several challenges related to collimator materials

Considerations on collimator materials

- Beam instabilities related to collimator impedance could limit beam parameters
 - More important the higher the bunch charge as for HL-LHC
- Robustness of collimators could limit luminosity performance
 - When reducing β^* , non-robust tungsten collimators have to be moved closer to the beam
 - If they are too close, they risk to be hit and damaged during beam failures
 - Potentially more critical in HL-LHC
- If we change any material, need to ensure also that they will work as well as present system in standard operation
 - Beam cleaning, radiation resistance, vacuum behaviour ...

Beam instabilities from impedance

 Passing bunch induces image currents in the surrounding materials (vacuum chambers, collimators ...)

- Induced wake fields act back on beam
 - Strength of effect depends on wall impedance and beam current

Induced instabilities

- Wake fields could excite the same bunch, or the following ones, in a self-amplifying manner
 - Beam becomes unstable

Mitigations:

- Lower impedance
- Lower beam current (not an option for HL-LHC)
- Damping mechanisms (octupoles, ADT ...)

Example observations from the LHC

- Examples from 2012 many LHC fills with observed instabilities
- Not always severe enough to cause beam dump
- Not sure of the exact role of collimator impedance complex interplay

Example observations from the LHC

- Examples from 2015 instability observed when damping effect from octupoles is reduced
- Threshold in octupole current, needed to keep the beam stable, depends on the machine impedance

Impedance from collimators

 Collimators make up for a large part of the HL-LHC total impedance over a large range of frequencies

Reducing the collimator impedance could significantly improve the beam stability

Main impedance contributors

Graphite (CFC)
 collimators give
 main impedance
 contribution:
 primaries and
 secondaries

- closest to the beam
- higher resistivity
- large number of collimators

 Studies on replacing these with low-impedance materials

Beam stability with different materials

 New collimator materials predicted to allow bunches with larger intensity and smaller emittance (~transverse beam size) to remain stable

Robustness considerations

- Some collimator materials (e.g. tungsten / inermet180) are less robust than others (e.g. CFC)
- Tungsten collimators are further out from the beam (collimation hierarchy) and should intercept less losses in standard operation
 - During asynchronous dumps, beam could be kicked directly onto tungsten collimators or the aperture, without hitting the primary first

Asynchronous beam dump

Standard dump: extraction kickers fire when no beam passes

Asynchronous beam dump

Standard dump: extraction kickers fire when no beam passes

 Asynchronous dump: kicker(s) fire when beam passes – kicked beam damage could tungsten collimators. TCDQ should protect

Asynchronous beam dump

Standard dump: extraction kickers fire when no beam passes

 Asynchronous dump: kicker(s) fire when beam passes – kicked beam damage could tungsten collimators. TCDQ should protect

What can happen if a TCT is hit?

- Impacts studied in HiRadMat
- Significant damage observed

Limits on TCT setting

- Margin to TCDQ needed so that tungsten collimators cannot hit by asynchronous dumps, even if orbit and optics drift
 - Inner limit on how close to the beam the they can be moved
 - At the same time: TCTs must protect aperture => inner limit on (normalized) aperture

Reducing β*

- Normalized aperture depends on beam size in triplet
- When squeezing β^* , triplet beam size blows up => limit on β^*

Expected TCT impacts in HL-LHC

- If orbit drifts, so that effective TCT setting goes down by $\sim 2\sigma$, risk of severe damage (see talk E. Quaranta)
- Plastic deformation (possibility to recover with 5th axis) occurs before

Considerations on TCT material

- More robust TCTs could be moved closer to the beam so that
 - Larger drifts of orbit and optics could be tolerated, or
 - We could protect a smaller normalized triplet aperture, allowing a smaller β^* and hence better luminosity performance
- Downsides
 - More robust usually means less dense and less absorbing
 - Larger leakage of shower out of the TCTs to triplets and experiments
 - Under study: impact on experimental background, and impact on damage risks for experiments and triplets
- Similar studies underway also for tungsten absorbers (TCLA) and new DS collimators (TCLD) – see talk E. Quaranta
 - However, their settings are less critical for LHC luminosity performance

Alleviation of losses with phase advance

- Alternative alleviation: Use betatron phase advance from kicker to ensure that tungsten collimators are not hit
 - Implemented in the LHC this year for TCTs => allows sub-nominal β*=40 cm
 - Not sure that this can be done in HL-LHC: strict phase constraints from ATS.
 Under study (S. Fartoukh et al.)

s (a.u.)

Conclusions

- The materials of the present LHC collimators impose performance limitations (LHC and HL-LHC)
 - β^* and hence luminosity limited by robustness of tertiary collimators (presently in tungsten)
 - Can not go too close to the beam, and protect arbitrary small aperture, to avoid damage during asynchronous beam dumps
 - Bunch intensity and emittance limited by collimator impedance
 - Instabilities risk to occur if too aggressive parameters are used
- New materials under study could alleviate some performance limitations of HL-LHC
 - If one property is improved, e.g. impedance, very important to ensure that all other properties (cleaning, radiation resistance, vacuum behaviour) are not degrading